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Abstract

The plant pathogen Phytophthora infestans emerged in Europe in 1845, triggering the Irish potato famine and massive
European potato crop losses that continued until effective fungicides were widely employed in the 20th century. Today
the pathogen is ubiquitous, with more aggressive and virulent strains surfacing in recent decades. Recently, complete
P. infestans mitogenome sequences from 19th-century herbarium specimens were shown to belong to a unique lineage
(HERB-1) predicted to be rare or extinct in modern times. We report 44 additional P. infestans mitogenomes: four from
19th-century Europe, three from 1950s UK, and 37 from modern populations across the New World. We use phylogenetic
analyses to identify the HERB-1 lineage in modern populations from both Mexico and South America, and to demonstrate
distinct mitochondrial haplotypes were present in 19th-century Europe, with this lineage initially diversifying 75 years
before the first reports of potato late blight.
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Phytophthora infestans (Mont.) de Bary is an oomycete path-
ogen of potatoes and tomatoes that causes late potato blight
(Haas et al. 2009). Known to exist as two mating types (A1
and A2), it can reproduce sexually in regions where they both
coexist and clonally when only one type is present (Fry 2008).
Although it is clear that the pathogen originated somewhere
in the New World, both the species’ center of origin and the
source of the 19th-century inoculum are debated. Deeply
divergent nuclear and mitochondrial lineages are found in
South America, but to date, there have been very few obser-
vations of the A2 mating type, suggesting sexual reproduction
rarely occurs there (Grünwald and Flier 2005; Goméz-Alpizar
et al. 2007; Vargas et al. 2009; Cárdenas et al. 2011). In contrast,
Mexican populations maintain substantial genetic diversity
and are known to harbor both mating types, implying that
the origin may be in this region (Fry 2008).

The introduction of P. infestans to domestic potato crops
in Europe in 1845 triggered massive crop losses, resulting in
the Irish potato famine and its associated social and economic
destruction (Stevens 1933; Bourke 1964). Initially, a single
clonal lineage named US-1, which was globally distributed
in the late 20th century, was suspected to be the cause of
the “famine-era” outbreaks of P. infestans (Goodwin et al.
1994). However, subsequent direct polymerase chain reaction
amplification of mitochondrial genes from 19th-century her-
barium samples of blight-afflicted potato leaves led to the

conclusion that these early historical P. infestans all possessed
mitochondrial DNA (mtDNA) haplotype Ia, whereas US-1
lineage isolates possessed haplotype Ib (Ristaino et al. 2001;
May and Ristaino 2004). It was then concluded that another
migration must have led to the introduction of the US-1
clonal lineage to the United States and Europe in the 20th
century (Ristaino et al. 2013). The US-1 clonal lineage has now
been mostly displaced by aggressive and genetically diverse
new strains, along with the A2 mating type, introduced from
the New World since the mid-1980s (Fry and Goodwin 1997;
Fry 2008; Cooke et al. 2012).

Recently, two independent studies reported genomic se-
quence data from both modern and historical P. infestans
samples (Martin et al. 2013; Yoshida et al. 2013). These his-
torical samples were derived from leaves of infected herbar-
ium potato samples from Western and Northern Europe,
collected between 1845 (the initial outbreak of late potato
blight in Europe) and 1889. Both studies concluded that the
historical samples were distinct from modern populations at
avirulence loci. Furthermore, one of the studies used a refer-
ence-guided iterative assembly strategy to produce the first
historical-era mitogenome sequences (Yoshida et al. 2013).
Using this data set of 13 19th-century mitogenomes, the au-
thors described a new mitochondrial lineage that they named
“HERB-1” and made the key observation that this lineage was
distinct from the modern Ia lineage and from all other
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lineages (that previously had been characterized using a smal-
ler number of standard mtDNA polymorphisms). As a con-
sequence, the authors hypothesized that today HERB-1 is rare
or possibly even extinct. Furthermore, based on the limited
number of within-lineage polymorphisms that were observed,
Yoshida et al. (2013) argued that HERB-1 was a rapidly evolv-
ing clonal genotype stemming from a single introduction into
Europe. In contrast, Martin et al. (2013) analyzed nuclear
genome data and found several distinct, rapidly evolving lin-
eages of P. infestans in the 19th-century samples studied,
which suggested multiple early introductions of the pathogen
into Europe.

Herein, we report mitogenome sequences of a larger
sample of P. infestans isolates from across its New World
range, including Mexico and South America, as well as four
additional 19th-century mitogenomes from Europe, and
three mitogenomes from US-1 lineage samples collected in
the United Kingdom during the 1950s. Through phylogenetic
analyses of these and previously reported mitogenome se-
quences, we survey the global diversity of P. infestans, espe-
cially in the context of the historical outbreaks of the 19th and
20th centuries. We conclude by offering insights into the
origin of both the species and the 1845 outbreak.

Results

Phylogenetic Analyses of Mitogenomes

A maximum-likelihood phylogeny of all well-assembled
(table 1, supplementary tables S1 and S2, Supplementary
Material online) P. infestans mitogenome sequences was con-
sistent with previous mitogenomic estimates (Avila-Adame
et al. 2006; Yoshida et al. 2013) and contained members from
lineages already identified (fig. 1). Many of these lineages were
well supported, with 100% bootstrap support at the common
node of the IIb lineage, 97% support for the IIa lineage, and
94% support for the Ib lineage. In addition, our extended data
set enabled identification of two novel lineages. One of these
lineages principally contains isolates from central Mexico
(with the single exception being Ecuador isolate P13346),
and the other is a Peruvian lineage closely related to the
reference genome IIa that includes isolates PCO038,
PCZ033, and PCZ098. Support for the Ia and HERB-1 lineages
were somewhat lower than for other lineages (65% and 73%,
respectively), and the node representing a common ancestor
of these two sister lineages received only 34% support, indi-
cating a relatively close phylogenetic relationship at this
resolution.

Consistent with our expectation based on the observa-
tions of Yoshida et al. (2013), the HERB-1 lineage contains
all additional 19th-century European specimens se-
quenced in this study (Pi1845A, Pi176, Pi1882, and
Pi1889). Of these, Pi1845A, which is the oldest known
sample and is believed to have been collected extremely
close (both temporally and geographically) to the proba-
ble site of initial introduction (Bourke 1964), is basal to all
others within the lineage. The HERB-1 lineage was distinct
from the lineages containing the reference genomes for
modern mtDNA haplotypes Ia and Ib, which were

previously implicated as the first and later introductions
to Europe, respectively. Although both phylogenies indi-
cate the HERB-1 lineage shares a more recent common
ancestor with the Ia lineage, this relationship is only well
supported in the Bayesian phylogeny. Isolates 8140
(Mexico), P7036 (Mexico), and P13346 (Ecuador) were
placed within the HERB-1 lineage, thus demonstrating
that this lineage is not extinct today and is likely found
across the native range of P. infestans in the New World.

The samples Kew122, Kew123, and Kew126, derived from
infected herbarium leaves collected in the United Kingdom in
the 1950s, belong to the US-1 lineage, which contains the
reference genome of mtDNA haplotype Ib. Similar findings
of Ib haplotypes in early- and mid-20th century herbarium
specimens screened for mtDNA SNPs have been reported
(Ristaino 2002; May and Ristaino 2004). Interestingly, two
more recent 20th-century samples from Mexico (P1362 and
P8141) also grouped with the US-1 lineage.

Bayesian Phylogenetic Analyses and Estimation of
Evolutionary Timescale

Using the sample ages as calibrations for the molecular clock,
we estimated the evolutionary timescale based on the mito-
genome sequences. We confirmed that the sample ages were
sufficient for this purpose using a date-randomization analysis
(supplementary fig. S1, Supplementary Material online). The
estimated coalescence time of all P. infestans mitogenomes is
638 years (95% credibility interval: 313–1,022 years), some-
what older than about 460-year estimate of Yoshida et al.
(2013), although the 95% credibility intervals overlap (fig. 2).
Similarly, the estimated coalescence time of all members of
the HERB-1 lineage is 257 years (95% CI: 193–357 years), also
older than the estimate of Yoshida et al. (2013). In this anal-
ysis, the Ia mtDNA lineage is a well-supported sister group to
the HERB-1 lineage.

Overall, the Bayesian and maximum-likelihood analyses
produced compatible estimates of the phylogeny. As relation-
ships within the HERB-1 lineage are not well supported, the
position of the modern New World isolates differed between
the two estimates of the phylogeny. In the maximum-likeli-
hood phylogeny, these isolates were basal to all other HERB-1
samples other than Pi1845A, whereas these samples are
nested in the lineage in the Bayesian phylogeny. Although
support values were higher for many nodes within the max-
imum-likelihood phylogeny, the clustering of these New
World HERB-1 samples is only supported in the Bayesian
phylogeny.

Discussion
The principal finding of this study is that the P. infestans
HERB-1 lineage is neither extinct nor likely to be particularly
rare or geographically limited, given its presence in two
Mexican isolates and one from Ecuador. Furthermore, our
observation from the Bayesian (and not the maximum like-
lihood) phylogenetic analysis that these three modern-day
New World isolates cluster with most of the more recent
19th-century historical European samples, with Pi1845A
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and Pi1876 (dating to 1845 and 1876, respectively) basal to
all other HERB-1 isolates, provides some evidence that the
HERB-1 mitogenomes had diverged prior to their introduc-
tion to Europe. Two further sources of evidence support this
conclusion. First, the estimated age of the most recent
common ancestor of the HERB-1 lineage is 257 years (95%

CI: 193–357 years), thus prior to the first reports of late blight
in both the United States (1843; Stevens 1933) and Europe
(1845; Bourke 1964) and 75 years prior to the 182-year best
estimate of Yoshida et al. (2013). This difference is probably
due to our inclusion of more divergent and older samples
from 19th-century Europe. Moreover, our estimate of the

Table 1. Provenance and Sampling Dates of Phytophthora infestans Samples for Which Novel mtDNA Genomes Were Assembled and Analyzed in
This Study.

Isolate ID Alternative IDs
or Species

Host Location Date of
Isolation or
Collection

Tissue
Source

Sequence Reads,
Sample Source

Genotype
and/or mtDNA

Lineage

Pi1845A K91 Solanum tuberosum Audenarde, Belgium 1845 Herbarium Martin et al. (2013) HERB-1

Pi1876 UPS 1 S. tuberosum Skårop, Denmark 1876 Herbarium Martin et al. (2013) HERB-1

Pi1882 UPS 2 S. tuberosum Stockholm, Sweden 1882 Herbarium Martin et al. (2013) HERB-1

Pi1889 K 79 S. tuberosum Germany 1889 Herbarium Martin et al. (2013) HERB-1

Kew126 S. tuberosum Britain 1952 Herbarium This report Ib

Kew122 S. tuberosum Britain 1955 Herbarium This report Ib

Kew123 S. tuberosum Ireland 1955 Herbarium This report Ib

P6636 PD_01096, Spelman 618 Toluca, MX 1980s Mycelium This report Ia

P8844 Hohl, Pineda 151 S. tuberosum Peru 1982 Mycelium This report Ib

P3681 Tooley 529 S. tuberosum Mexico 1983 Mycelium This report Ia

P3683 Tooley 550 S. stoloniferum Mexico 1983 Mycelium This report Ia

P3685 Tooley 533 S. tuberosum Mexico 1983 Mycelium This report Ia

P6629 Tooley 511 S. tuberosum Mexico 1983 Mycelium This report; Peter Tooley Ia

P6634 PD_02383, Speil543 Mexico 1983 Mycelium This report; Linda Speilman Ia

P7036 Goodwin 575 S. tuberosum Central Mexico 1986 Mycelium This report; Steve Goodwin HERB-1

P8140 PD_01946 , P15103, Fry 572 Central Mexico 1986 Mycelium This report HERB-1

P6635 PD_02388, Fry 580 Toluca, MX 1986 Mycelium This report Ia

P8141 Fry 616 Central Mexico 1987 Mycelium This report Ib

P8143 PD_01949, P15154, Fry 619 Central Mexico 1987 Mycelium This report Ia

P8144 Fry 622 Central Mexico 1987 Mycelium This report Ia

T30-4 S. tuberosum Netherlands 1988 Mycelium Raffaele et al. (2010) Ia

P6570 Davidse 89018, P570 Netherlands 1989 Mycelium This report; Davidse Ia

P6515 CIP 27, PD_00883, Fry 543 S. tuberosum Peru 1989 Mycelium This report; Greg Forbes Ib

P6750 Goodwin 586 S. tuberosum Saltillo, Mexico 1989 Mycelium This report IIa

P6752 Goodwin 606 S. tuberosum Saltillo, Mexico 1989 Mycelium This report IIa

90128 S. tuberosum Netherlands 1990 Mycelium Raffaele et al. (2010) Ia

PHU006 S. tuberosum Peru 1996 Mycelium This report EC-1, IIa

PIC97207 S. tuberosum Mexico 1997 Mycelium This report Ia

PIC97605 S. tuberosum Mexico 1997 Mycelium This report Ia

PIC97630 S. tuberosum Mexico 1997 Mycelium This report Ia

PCO038 S. tuberosum Peru 1997 Mycelium This report; Greg Forbes EC-1, IIa

PCZ026 S. tuberosum Peru 1997 Mycelium This report PE-6, IIa

PCZ033 S. tuberosum Peru 1997 Mycelium This report; Greg Forbes EC1.2, IIa

PCZ050 S. tuberosum Peru 1997 Mycelium This report; Greg Forbes PE-3, Ia

PCZ098 S. tuberosum Peru 1997 Mycelium This report; Greg Forbes EC1.3, IIa

PIC98372 Mexico 1998 Mycelium This report Ia

P13198 CIP3198 tuq S. tuquerrense Napo, Ecuador 1998 Mycelium This report EC-1, IIa

P10650 MX980099 S. tuberosum Toluca, Mexico 1998 Mycelium This report Ia

PIC99189 S. stoloniferum Mexico 1999 Mycelium Raffaele et al. (2010) Ia

P13346 CIP3346 col S. colombianum Napo, Ecuador 2001 Mycelium This report; David Cooke HERB-1

P13873 CIP 3873 S. tuberosum Cañar, Ecuador 2005 Mycelium This report IIa

BL2009P4 PA112 S. tuberosum PA 2009 Mycelium Martin et al. (2013) US-23. Ia

IN2009T1 PA114 S. tuberosum PA 2009 Mycelium Martin et al. (2013) US-22, Ia

RS2009P1 PA117 S. tuberosum PA 2009 Mycelium Martin et al. (2013) US-8, Ia

NOTE.—PA, Pennsylvania.
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evolutionary rate is conservatively high because there are var-
ious factors that can cause the elevation of rates when they
are calibrated using sample ages (Gibbs et al. 2010; Ho et al.
2011). If the actual evolutionary rate is lower than that esti-
mated in our analysis, then the most recent common ances-
tor of the HERB-1 lineage would be even older. Second,
Pi1845A, which is recognized as deriving from the very first
outbreak in 19th-century Europe and is likely the oldest
sample analyzed in this study, is clearly basal (as opposed
to ancestral) to the other members of HERB-1 in both phy-
logenetic analyses.

Highly supported structure within the HERB-1 lineage
indicates that multiple distinct mitogenome haplotypes
were present in 19th-century Europe, a situation compatible
with either multiple introductions of different haplotypes or
a single introduction containing multiple haplotypes. These
observations are consistent with the hypothesis of Martin
et al. (2013), based on nuclear genome polymorphisms dif-
ferentiating 19th-century P. infestans strains, and do not

support the conclusions drawn by Yoshida et al. (2013)
from a more limited data set.

Whether multiple HERB-1 mitogenomes were present in
19th-century Europe as a result of multiple introduction
events, as opposed to a single introduction containing mul-
tiple HERB-1 haplotypes, remains uncertain. We note, how-
ever, that the Ia and HERB-1 mtDNA lineages (both formerly
type Ia) show some phylogenetic resolution at the sublineage
level and appear to have radiated several times. Mexican sam-
ples are basal to the Ia lineage in both phylogenetic analyses,
suggesting migration of Ia out of Mexico in recent times.
However, given the lack of robust, relevant phylogeographic
structure within the tree, we believe our data demonstrate
that further work is needed to resolve the long-debated ques-
tion (Grünwald and Flier 2005; Fry 2008; Gómez-Alpizar et al.
2007; Birch and Cooke 2013) as to whether the 19th century
P. infestans outbreaks were derived from introductions
sourced in Mexico versus South America. Although historical
evidence of movement of potatoes supports the latter
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FIG. 1. Maximum-likelihood estimate of the mitogenome phylogeny of Phytophthora infestans and close relatives from Phytophthora clade 1c.
Phytophthora infestans reference genomes (Ia, Ib, IIa, and IIb) were included in the alignment for illustrative purposes (bold sample labels). Shaded
circles at nodes indicate the support from 100 bootstrap replicates: black, 90–100%; gray, 80–90%; white, 50–80%. Colored circles on the right indicate
sampling location and correspond to the world map (inset). Sample labels in red for 19th-century samples, blue for 1950s samples, and black for modern
isolates and reference genomes. The tree is rooted using the two P. mirabilis isolates PIC99114 and P7722 as outgroups. Gray shading highlights major
clades that are well supported in this analysis. Scale bar indicates a branch length of 0.0009 substitutions per site.

1417

Mitochondrial Lineage Responsible for the Irish Potato Famine Persists . doi:10.1093/molbev/msu086 MBE
 at D

 H
 H

ill L
ibrary - A

cquis D
ept S on M

ay 30, 2014
http://m

be.oxfordjournals.org/
D

ow
nloaded from

 

ly
,
-
http://mbe.oxfordjournals.org/


possibility (Bourke 1964), a paucity of South American isolates
in mtDNA lineages closely related to HERB-1 points to an
introduction from Mexico.

Our study further sheds light onto the origins of the US-1
lineage (containing the reference genome for mtDNA

haplotype Ib), represented in our data by nine samples, in-
cluding three derived from infected herbarium leaves col-
lected in the United Kingdom in the 1950s (Kew122,
Kew123, and Kew126). Although this lineage originally was
proposed as the causative agent of the 19th-century potato
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blight outbreaks (Goodwin et al. 1994), this hypothesis was
subsequently disproven (Ristaino et al. 2001). Our analysis
shows that the introduction of this lineage to Europe must
have occurred before 1952, and is consistent with the identi-
fication of the US-1 lineage in Southeast Asia and China from
herbarium samples collected in the early part of the 20th
century (Ristaino and Hu 2009). We also note that this lineage
existed in Europe with considerable substructure. In the
Bayesian phylogeny, Kew126 (collected 1952) clusters with
one group of more modern Mexican and South American
isolates, whereas Kew122 and Kew123 (both collected 1955)
cluster with another group of New World and introduced
isolates. Although both Mexican and Peruvian isolates belong
to the US-1 lineage, the lineage has been found more com-
monly in South America than in Mexico (Grünwald and Flier
2005). Neither the Bayesian nor the maximum likelihood anal-
yses support an emergence of the US-1 mtDNA lineage from
the HERB-1 lineage as suggested in a recent review (Birch and
Cooke 2013). In our BEAST analysis, the Ia mtDNA lineage is a
well-supported sister group to the HERB-1 lineage, suggesting
that they shared a common ancestor more recently than did
HERB-1 and the Ib lineage (fig. 2).

Indeed, we report the presence of most of the identified
lineages in South American and Mexican populations. Thus,
lacking any clear phylogeographic structure, we cannot con-
tribute substantially to the open question of whether the
P. infestans species complex originated in Mexico or South
America and conclude that this question is unlikely to be re-
solved using mitochondrial data alone. Interestingly, the most
divergent mtDNA lineages (type II), basal to all others, are from
South America, further supporting previous observations that
the earliest measurable evolutionary divergence within this
species (separating the type I and II mtDNA lineages) occurred
in South America (Avilia-Adame et al. 2006; Goméz-Alpizar
et al. 2007). It should be noted that this deepest divergence in
the P. infestans mitogenome tree is dated at 638 years (95% CI:
313–1,022 years), which, as implied by Yoshida et al. (2013), is
recent enough that human-mediated movement of potato
tubers from South America to Mexico is a possible factor
(Salaman 1949). Increased resolution of the phylogeny
through detailed sampling of the P. infestans lineages of the
South American Andes could answer this open question.

Supplementary Material
Supplementary tables S1 and S2 and figure S1 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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