
P1: FUI

August 1, 2000 18:48 Annual Reviews AR107-22

Annu. Rev. Phytopathol. 2000. 38:541–76
Copyright c© 2000 by Annual Reviews. All rights reserved

NEW FRONTIERS IN THE STUDY OF DISPERSAL

AND SPATIAL ANALYSIS OF EPIDEMICS CAUSED

BY SPECIES IN THE GENUS PHYTOPHTHORA

Jean Beagle Ristaino
Department of Plant Pathology, North Carolina State University, Raleigh,
North Carolina 27695; e-mail: JeanRistaino@ncsu.edu

Marcia L. Gumpertz
Department of Statistics, North Carolina State University, Raleigh,
North Carolina 27695; e-mail: Gumpertz@ncsu.edu.

Key Words dispersal, epidemiology, management, molecular epidemiology,
spatial pattern analysis, Phytophthora diseases

■ Abstract Diseases caused by species in the genusPhytophthoraare responsible
for significant economic losses on a wide range of host plants. Spatial pattern is one of
the most characteristic ecological properties of a species, and reflects environmental
and genetic heterogeneity and reproductive population growth acting on the processes
of reproduction, dispersal, and mortality. Species ofPhytophthoracan be dispersed
either in soil, via surface water movement down rows, from rain splash dispersal, by
air, or via movement by humans or invertebrate activity. Dispersal results in patchiness
in patterns of disease or inoculum in soil. In this chapter we discuss the mechanisms
of dispersal of members of this important genus and describe several methods that
can be used to statistically analyze data for which spatial coordinates are known. The
methods include testing spatial autocorrelation for binary data or continuous data,
semivariograms, and regression models for spatial data. The goal of spatial pattern
analysis is to gain an understanding of the mechanisms of dispersal of propagules and
to sort out the physical and biological factors that are important for spread of plant
pathogens and ultimately, for disease management.
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INTRODUCTION

Plant diseases caused by species in the genusPhytophthoraare responsible for
significant economic losses on many important food, fiber, and ornamental crops
(30). Phytophthoraspecies are classified in the Kingdom Stramenopila and the
phylum Oomycota and are actually more closely related to the golden brown
algae than the true fungi (20, 48).Phytophthoraspecies have a diploid life cycle
and contain cellulose in their cell walls unlike the true fungi. These water molds
are capable of forming flagellated zoospores that are easily dispersed by water.
Phytophthoraspecies are motile microorganisms and dispersal processes play a
major role in the spatial patterns that are observed within fields and globally.

Our goal in this chapter is to address several questions. First, why study spatial
patterns? Second, what are the primary mechanisms of dispersal ofPhytophthora
species and how do these mechanisms relate to the spatial patterns of disease or
propagules that have been observed in fields? Third, what kinds of experimental
and statistical procedures are available and how can they be used to document
spatial heterogeneity and the underlying ecological processes? Fourth, what new
frontiers await us in the use of spatial pattern analysis for management of Phytoph-
thora diseases? Are there potential new applications of spatial pattern analysis in
the areas of population genetics, precision agriculture, or global climate change
research? Our ultimate goal is to stimulate new research and encourage use of the
best statistical, experimental, and biological tools available to address important
questions on the spatial dynamics of Phytophthora diseases.

WHY STUDY SPATIAL PATTERNS?

Epidemics caused byPhytophthoraspecies are often initially patchy in appear-
ance. The patchiness can manifest itself over a range of hierarchical scales, from
the individual host plant to regional or global scales. When this patchiness has
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a certain amount of predictability so that it can be described quantitatively, we
call it spatial pattern (25). Spatial pattern in plant pathology has been described
as the arrangement of disease entities relative to each other and to the architec-
ture of the host crop (39). Patterns of diseased plants or propagules in soil arise
from the interaction of physical, chemical, and biological factors that influence
pathogen dispersal and infection processes. Dispersal can be defined as the process
of movement of individuals or their propagules into or out of the population or
population area (94). The term dispersion refers to the spatial pattern that results
from dispersal processes (16, 97). Spatial pattern is one of the most characteristic
ecological properties of a species, and reflects environmental and genetic hetero-
geneity and population growth acting on the processes of reproduction, dispersal,
and mortality (75, 116).

The biological and ecological characteristics of pathogen life cycles and dis-
eases are the primary determinants of the spatial pattern of epidemics (14). In some
cases, there is a direct relationship between past process and the spatial patterns that
are observed. For species ofPhytophthorathat primarily cause root disease, the
spatial pattern of initial inoculum in a field can have a large effect on the subsequent
pattern of diseased plants that are observed. In other cases, spatial pattern analysis
can be used to generate hypotheses about underlying ecological processes or sug-
gest mechanisms that give rise to them (25). Spatial pattern analysis can provide
quantitative information on population dynamics of pathogens and is essential
for modeling and simulation activities. In addition, analysis of spatial patterns
can aid in the design of experiments in epidemiological research, development of
sampling programs for disease or pathogen monitoring, and for development of
management strategies (16). Even data from the new field of genomics may lend
itself to spatial pattern analysis. The spatial and temporal expression patterns of
thousands of genes can now be elucidated using microscopic DNA microarrays
(3). Statistical analysis of these complex spatial patterns within individuals will
be needed to elucidate underlying function.

In recent years more researchers have begun to study and quantify Phytoph-
thora disease epidemics using spatial analyses in order to relate the observed
characteristics of epidemics to the underlying ecological processes including re-
production, dispersal, competition, and survival. These kinds of field studies are
very labor intensive. For this reason there are still relatively few good examples
in the literature of quantitative analysis of spatial pattern of Phytophthora epi-
demics over time (54, 62, 65, 100, 103, 104, 136). The paucity of information on
the spatial dynamics of inoculum dispersal and disease spread has hindered our
ability to develop more sustainable management strategies for many Phytophthora
diseases. Phytophthora diseases continue to cause large losses on a wide range of
important crops because management practices, including the use of genetic resis-
tance, are not complete and in many cases, sole reliance on fungicides has led to
pathogen resistance in the field for many species in the genus (10). Ecologically
based approaches that include spatial analysis of epidemic development could
clearly lead to more sustainable methods of disease management for a number of
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Phytophthora diseases. An important overall goal of our research with thePhy-
tophthora capsici–pepper pathosystem has been to move beyond the simple de-
scription of pattern of inoculum or disease during Phytophthora epidemics in the
field and into the explanatory phase of spatial pattern analysis. We have identi-
fied operative mechanisms of dispersal that lead to the spatial patterns observed
in naturally infested fields (103, 104). Once operative mechanisms of dispersal
are identified, novel management strategies can be developed to block dispersal
(103, 104). We have also dissected individual components of dispersal processes
in theP. capsici–pepper pathosystem and determined their relative contributions
to temporal and spatial components of epidemic development (106, 115).

DISEASE CYCLES CAUSED BY PHYTOPHTHORA SPECIES

We use the disease cycle ofP. capsici, a typicalPhytophthoraspecies (Figure 1;
see color insert) to frame much of our discussion in this chapter. The disease cy-
cle of a pathogen includes the life history of the pathogen in association with its
host. For many diseases caused byPhytophthoraspecies, oospores provide the
primary inoculum for epidemic development and these propagules reside in soil
(30, 56). Other species ofPhytophthorareside as chlamydospores in soil (98) or
the pathogen survives primarily as mycelia or sporangia in infected plant parts such
as tubers or infected roots that are buried in soil (126, 130). For many species,
a component of their life cycle is soilborne. For heterothallic species, both an
A1 and A2 mating type are required for sexual reproduction. These mating types
are actually compatibility types and do not correspond to dimorphic forms. Other
species in the genus are homothallic and do not require two mating types to pro-
duce sexual oospores (91). In most cases, sporangia or zoospores released from
direct germination of sporangia are the primary infective units that are dispersed
from overwintering inoculum and are responsible for primary infections. In the
case ofP. capsici, oospores germinate predominately by the production of spo-
rangia but germination via a germ tube also is possible (Figure 1) (55). Repeated
asexual cycles of sporangium production and dispersal are involved in secondary
spread within and between fields for many species ofPhytophthora. Many species
produce dehiscent sporangia that are easily dispersed from infected foliage in wind-
driven rain (30, 52).

WHAT ARE THE MECHANISMS OF DISPERSAL
OF PHYTOPHTHORA SPECIES?

Dispersal processes have major effects on both the spatial and temporal com-
ponents of epidemic development. To provide a conceptual framework, we have
considered that diseases caused byPhytophthoraspecies can be dispersed by sev-
eral distinct mechanisms (Table 1). Dispersal processes from root-to-root in soil
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Figure 1 Disease cycle of Phytophthora blight on bell pepper caused byPhytophthora
capsic. This disease cycle is typical of many diseases caused by species ofPhytophthora.
Most species contain a soilborne phase in which the sexual oospore or asexual chlaymy-
dospores survive in soil or plant debris and provide the primary inoculum (usually sporangia
and zoospores) for subsequent epidemics. Repeated cycles of sporangium formation, dis-
persal, and zoospore release are responsible for secondary cycles of inoculum in the asexual
phase of disease.
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TABLE 1 Five potential mechanisms of dispersal ofPhytophthoraspecies in the field and
effects of dispersal mechanisms on components of epidemic development

Dispersal Effects on spatial pattern and rate
mechanism Mode of dispersal of inoculum of disease increase (r∗)

Mechanism I Within soil Limited spread within rows
a. Root growth to inoculum New foci rare
b. Inoculum movement to roots Slow elongation of clusters
c. Root to root contact Rate (r∗) low

Mechanism II Inoculum dispersal in surface Spread within and across rows
water New foci local or distant

Rapid cluster expansion
Rate (r∗) high

Mechanism III Splash dispersal from soil to Spread within and across rows
leaves, stems, and fruit New foci local

Moderate cluster expansion
Rate (r∗) moderate

Mechanism IV Aerial dispersal from sporulating Spread long distance
lesions on leaves, stems, or New foci overlap quickly
fruit to other aerial parts of plants Rapid cluster expansion

Rate (r∗) high

Mechanism V Dispersal by human or invertebrate Spread either long distance
activity, including movement of globally or local within fields
soil, plants, or propagules New foci local or distant

in previously noninfested areas

can involve either root growth to inoculum, inoculum movement to roots, or root-
to-root contact (mechanism I) (15, 111). The primary change in spatial pattern will
occur within rows, the occurrence of new foci may be rare, and the degree of ag-
gregation of disease will change little with time (Table 1). However, movement of
inoculum down rows with surface rain water or furrow irrigation (mechanism II)
will result in increased rates of disease and spread may be detected within many
rows for long distances in a similar direction (7, 88, 111) (Table 1). Rapid rates
of disease increase will occur if splash dispersal of inoculum from soil to aerial
parts of plants occurs with rainfall or overhead irrigation events (mechanism III).
There may be two-dimensional expansion of disease foci both within and across
rows and new foci will occur in the field close to existing foci (99). Aerial dis-
persal of inoculum from sporulating lesions on leaves, stems, or fruit to other
aerial parts of plants within and between fields is a major mechanism of dispersal
for Phytophthoraspecies that infect primarily above-ground portions of plants
(mechanism IV). The rate of disease increase will be very rapid and the degree
of aggregation of disease will decrease rapidly as focal expansion occurs. New
foci will develop and overlap both within and across many rows or fields (66, 136)
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TABLE 2 Some major species ofPhytophthora classified based on their mechanism
of dispersal and host crop infected

Dispersal mechanism Species ofPhytophthora Host crop Reference

I. Within soil: roots to P. sojae Soybean 131
inoculum, inoculum P. parasitica Tobacco 111
movement to roots, P. cinnamomi Banksia 53
root to root Fraser fir 98

P. citrophthora Citrus 57

II. Inoculum spread in surface P. parasitica Tomato 88
water P. capsici Peppers, squash 103

P. cinnamomi Eucalyptus 109, 129
Banksia 53

III. Splash dispersal from soil P. cactorum Strawberries 78
to leaves, stems, and fruit P. palmivora, P. megakarya Cocoa 43

P. syringae Apple 30
P. botryosa Rubber 30

IV. Aerial dispersal from P. infestans Potato, tomato 136
sporulating lesions on P. palmivora Cocoa 43
above-ground plant parts P. parasitica Rhododendron 4

V. Dispersal by humans or P. infestans Potato 37
invertebrate activity P. palmivora Cocoa 31
including movement of soil, P. fragariae Strawberry 28
plants of propagules P. citricola Citrus 51, 57

P. cinnamomi Eucalyptus 61

(Table 1). Phytophthoraspecies also can be dispersed by human or invertebrate
activities (mechanism V) including the movement of equipment with infested soil,
movement of plant materials containing the pathogen, or by insect or animal vec-
tors (26, 31, 38, 51, 61). This mechanism of dispersal can result in spread over very
long distances including globally or on more local scales (51). Some major species
of Phytophthoraclassified by their mechanisms of dispersal are shown in Table 2
for illustration.

Dispersal of Inoculum in Soil: Mechanism I

Because initial inoculum in soil provides the reservoir for subsequent epidemic
development for species ofPhytophthorawith a soilborne phase, characterization
of changes in spatial patterns of inoculum over time can provide fundamental
information about inoculum dispersal mechanisms (16, 17). Several studies have
documented aggregated spatial patterns of initial inoculum of populations ofPhy-
tophthoraspecies in soil and related them to dispersal mechanisms (4, 19, 57, 103,
118). Initial inoculum ofP. parasiticawas aggregated in tobacco soils in Florida
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and aggregation decreased with depth (34). Aggregation of inoculum has also
been described forP. parasiticaon pineapple andP. parasiticaon citrus (19, 118).
Propagules ofP. sojaeare aggregated near the soil surface and are higher in no-
till versus conventional tilled fields of soybean since inversion of the debris with
tillage does not occur in the no-till system (131).

Patterns of inoculum ofPhytophthoraspecies in soil have been mapped for
perennial crops such as citrus or apple, and often reflect the distribution of the host
roots in soil (57, 63, 71, 118). The spatial pattern of inoculum ofP. cactorumin soils
from apple orchards was strongly associated with distance from the tree. Propagule
densities decreased with increased distance from the tree, with increased depth in
soil, and with increased distance up slopes (57). Interestingly, earthworms castings
contained propagules ofP. cactorumand earthworms were implicated in dispersal
of propagules (mechanism V) to the soil surface where densities were highest
(57). Aerial photography has been used to document the spatial patterns of disease
caused byP. cinnamomiover a 30-year period in a Banksia forest ecosystem and
the rate of disease front extension was calculated (53).Phytophthora cinnamomi
spread at faster rates in the low-lying downhill slope positions than in the upper
slopes and the main mechanism of dispersal in the uphill direction was determined
to be via root-to-root spread (mechanism I) (53).

Population densities ofPhytophthoraspecies in soil are dynamic and can be
influenced by soil physical and chemical factors in addition to the presence of
actively growing, susceptible roots. Soil physical and chemical characteristics are
spatially heterogeneous within field soils (29, 85, 119, 128). There is little pub-
lished information relating the heterogeneity of physical and chemical factors of
soil with the heterogeneity of initial spatial patterns of propagules ofPhytoph-
thora species in soil. Soil clay content, sodium, and copper concentrations were
useful in explaining the spatial variation among densities of several plant parasitic
nematodes in field soils (92). Soil chemical factors are known to affect diseases
caused by soilborne pathogens includingPhytophthoraspecies (73, 81, 86). Soil
salinity may affect the spatial pattern of propagules and dispersal ofPhytoph-
thora species in soil, since high concentrations of soluble salts can predispose
plant roots to more severe Phytophthora root rots (73). Methods of regressing
spatially correlated variables including geostatistical analysis (5, 21, 41, 50, 113)
or multivariate statistical procedures (59) can be used to describe the correlations
among soil variables, pathogen propagules, and disease incidence. These analytical
techniques can provide tools for a more fundamental understanding of spatial het-
erogeneity ofPhytophthoraspecies in soil and the relationship of initial inoculum
to subsequent disease.

Primary inoculum ofP. capsiciin the soil causes root infections that progress
to crown infections in pepper (104). Wilting almost always precedes crown lesion
development in naturally infested fields, which suggests the importance of root
infections (mechanism I) and the soilborne phase of the disease (104). Spatial
pattern mapping and two-dimensional distance class analysis were used to map
the focal expansion of disease symptom types over time in several fields that
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were naturally infested withP. capsici(104). In one field, wilted plants appeared
in a circular area surrounding a large aggregation of plants with crown lesions,
whereas the incidence of plants with above-ground stem lesions (from splash
dispersal, mechanism III) was low. The disease focus expanded both within and
across rows for long distances in this field and was associated with water drainage
patterns in the field. In this example, spatial pattern analysis of symptom classes
was used to determine that inoculum dispersal within soil (mechanism I) and in
surface water down rows (mechanism II) were operative dispersal mechanisms
(104).

We characterized the changes over time in the spatial pattern of disease, soil
propagule levels ofP. capsici, and soil water content during naturally occurring
epidemics of Phytophthora blight in three commercial bell pepper fields in two
consecutive years (46, 65, 103, 104). In three of four fields examined, initial disease
occurrence in fields was highly spatially correlated with areas of fields where
high soil moisture content occurred early in the season (65) (Figure 2A,C). Early
season propagule levels ofP. capsici, as estimated by a leaf disk bioassay, did not
consistently demonstrate strong spatial dependence and were not closely associated
with the initial occurrence or severity of Phytophthora root and crown rot disease
(Figure 2A) but demonstrated stronger spatial dependence with disease later in
the season (Figure 2B,D). Propagules of the pathogen may have been distributed
widely in soil in a given field but disease developed initially where pathogen
propagules were present and conditions of soil moisture were conducive for disease
(65). These results emphasized the importance of soil water in the development
and spread of disease.

The components of primary dispersal ofP. capsiciin soil were examined in
field experiments. The pathogen can be dispersed within the soil by one of several
mechanisms (mechanism I; Table 1), including inoculum movement to roots, root
growth to inoculum, and root-to-root spread (115). In controlled field tests, an
infected plant containing sporangia and zoospore inoculum was placed in PVC
tubes on the soil surface and rainfall spread inoculum to roots in soil. In other
treatments, inoculum was buried in wax-encased peat pots that contained either
sporangia and mycelia or infected roots. The use of wax-encased inoculum buried
in soil allowed root growth into the inoculum source but prevented inoculum
movement out of the wax-encased pots so that dispersal mechanisms could be
compartmentalized. Infection of the roots and crowns of adjacent plants in the plot
was consistently more rapid when inoculum moved to roots via water than when
healthy roots grew to inoculum or roots that were buried in soil (115).

Inoculum Dispersal in Irrigation and Surface Water:
Mechanism II

Phytophthoraspecies have been isolated from surface water sources used for irriga-
tion of major crops in many regions of the world (27, 64, 74, 79, 112, 114, 117, 127).
Phytophthora cinnamomiwas detected in headwaters of several major rivers in
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Figure 2 Spatial pattern map of disease severity caused byPhytophthora capsicion bell
pepper at (A) Julian day 168 and (B) day 217 in a naturally infested field. Spatial pattern
map of (C) gravimetric soil water content and (D) propagule levels of the pathogen in soil
at day 171 in the same field.

South Africa over a geographically large area (127). Irrigation with infested sur-
face water sources can result in rapid disease increase and is probably a major
means by which species in the genus are dispersed regionally over longer dis-
tances between fields.

Inoculum movement down rows with surface water (mechanism II) is an impor-
tant mechanism of dispersal for many polycyclic Phytophthora diseases (28, 88)
and this is the predominant mechanism of dispersal ofP. capsiciin naturally in-
fested fields (7, 11–13).P. capsicican spread from plant to plant within rows from
initial point sources of inoculum and across rows from primary foci of disease
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(7, 104, 108). Runs analysis, two-dimensional distance class analysis, and geo-
statistical analyses were used to quantify changes in spatial patterns of symptom
development and inoculum in soil over time (Figures 2, 3) (65, 103, 104). Symp-
tom expression was nonrandom in each field and was clearly aggregated. Aggrega-
tion of pairs of quadrats containing plants with wilt symptoms or dead plants was
also greater within than across rows. Spread of disease occurred unidirectionally
within many rows for long distances greater than 15 m and disease foci increased
in size over time (Figure 2A,B) (103, 104). Inoculum ofP. capsiciwas dispersed
up to 70 m from point sources of inoculum in furrow-irrigated fields in Califor-
nia (13). In contrast, inoculum dispersal ofP. parasiticaon tomato from point
sources of inoculum to roots in soil (mechanism I) was limited to less than 2 m.
However, spread ofP. parasiticato fruit on the surface of saturated soil (mecha-
nism II) was extensive and the pathogen occurred in free water to distances of 68
m downstream from infestation sites during furrow irrigation (88). Path coeffi-
cient analysis was used to demonstrate the spread ofP. capsicifrom point sources
of inoculum in the field; the cumulative amount of rainfall had the largest direct
effect on the progress of disease (7). All these examples suggest the importance
of surface water movement within rows in spread of disease.

Movement ofPhytophthoraspecies in surface water sources in forest ecosys-
tems also has been well documented (26, 63, 109).P. cinnamomihas been recov-
ered from lateral subsurface water flowing at the base of lateritic soils to depths
of 1 m in theJarrah forests of Australia (63, 109, 129). Zoospores have been re-
covered in subsurface water and these propagules are responsible for infection of
roots of Eucalyptus, Banksia, and many other species of trees (109, 129). Up-
hill disease spread has been attributed to inoculum movement from root to root
in soil (mechanism I), whereas downhill disease spread has been attributed to
drainage of surface (mechanism II) and subsurface water (53, 129) Aerial photog-
raphy and quadrat mapping have been used to delineate differences in the boundary
margins between diseased and healthy trees (26). Surface drainage water move-
ment on logging roads and movement of soil (mechanism V) from logging and
recreational vehicle traffic through National Parks has also been associated with
pathogen spread in this system (26). Restricted access of recreational vehicles
to areas infested withP. cinnamomihas been suggested to slow the spread of
disease (26).

Splash Dispersal from Soil to Leaves, Stems,
and Fruit: Mechanism III

Splash dispersal ofPhytophthoraspecies from soil to above-ground portions of
plants with rainfall events (mechanism III) is a major means of dispersal of a
number of species in the genus (9, 43, 76, 122). This mechanism has been clearly
documented for theP. cactorum–leather rot pathogen of strawberry (77). Splash
dispersal has been examined at three hierarchical scales forP. cactorumincluding
splash from single water-drop impactions (133), spore transport with simulated
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rain over small areas (78), and disease spread in the field with naturally occurring
rain (78, 99).

Splash dispersal from single water-drop impactions was characterized using
water-sensitive paper, fluorescent dyes, andP. cactoruminfected strawberry fruit
(133). Numbers of sporangia per droplet were described by a negative binomial
distribution. Drop size, but not fall height, significantly affected sporangium dis-
persal inP. cactorumand between 9 and 56 sporangia were dispersed by a single
impaction (133). Numbers of sporangia per impaction were linearly related to the
impact velocity of the rainfall.

Dispersal of spores ofP. cactorumandColletotrichum acutatumfrom infected
strawberry plants to other plants over small areas was investigated with a rain
simulator (44, 78). Disease incidence increased with increasing rain duration and
the incidence of leather rot increased from 1% with a 2 min rainfall event to 26%
after a 16 min rainfall event. Secondary splash dispersal to noninfected plants af-
ter removal of the infected source plant also was documented in this pathosystem.
Sporangia washed from fruit by a 4–8 min pre-rain event were subsequently dis-
persed to additional plants with subsequent rainfalls after the source inoculum was
removed. These data indicate that secondary dispersal by rain splashing resulted
in significant levels of disease.

Splash dispersal of inoculum with rainfall and disease spread in the field has
been documented for many species ofPhytophthora(Table 2).P. cactorumis dis-
persed with rainfall events and within-row spread has been observed and character-
ized using spatio-temporal autocorrelation analysis (99, 100). Strong barrier effects
were operating across rows in theP. cactorum–leather rot pathosystem and a lack
of spatial dependence beyond the first spatial lag was observed (100). Thus mod-
erate expansion of disease foci occurred with this splash-dispersedPhytophthora
species and new foci tended to be local either within or across rows. In contrast,
secondary splash drops from rainfall impacting on cocoa leaves can carry sporan-
gia ofP. palmivoraup to heights of 70 cm in cocoa trees and aerosol droplets can
disperse inoculum to even great heights in the plant canopy (43).

Aerial Dispersal from Sporulating Lesions on Leaves,
Stems, or Fruit: Mechanism IV

Aerial dispersal of inoculum from sporulating lesions on leaves, stems or fruit to
other parts of plants within and between fields is a major mechanism of dispersal
for Phytophthoraspecies that infect primarily above ground portions of plants
(mechanism IV). ForP. infestanson potato, new foci will develop and overlap
both within and across many rows and the rate of disease increase can be rapid
(136). Sporangia ofP. infestansdo not survive under conditions of long-distance
dispersal since sporangia viability is decreased under dry conditions. Short-range
aerial dispersal has been reported for sporangia ofP. infestans.

Evidence for two distinct dispersal processes were described forP. infestans.
using spatial mapping of disease symptom classes (54). Late blight epidemics can
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be initiated when infected tubers are planted in soil (mechanism V). Early season
lesions on above-ground portions of plants were initiated close to the infected tuber
source in replicated field trials (54). Subsequent focal expansion occurred from
these infected plants and their aerial dispersal (mechanisms IV) was observed over
longer distances and to adjacent crops (54).

Quantitative models of disease spread from a point source of inoculum on
more local scales have been developed to describe disease gradients caused by
P. infestans(83, 84). The gradient parameter, g, defined as the rate at which the logit
of disease severity declines with distance, was determined. The gradient parameter
is equal to the apparent infection rate divided by the wave velocity (g= r/v).
Treatments such as rate-reducing resistance and fungicide use flattened disease
gradients but did not affect the velocity of spread, which appeared constant. The
velocity of spread ofP. infestanswas estimated to be 3.7 m/day in this study and was
quite low (84). The authors suggested that the scale of the plot size affected results
and that as the scale of the epidemic increases, the velocity should increase (84).

More recently, several new models have been proposed to measure the velocity
of epidemic waves from an infection focus (32, 110, 135). The assumption of
constant frontal velocity (traveling dispersive wave) has been questioned and it has
been proposed that epidemics, such as those caused byP. infestans, should proceed
with increasing frontal velocity (dispersive epidemic wave) as the scale of the focus
increases and thus, velocity is scale dependent (110). These models have been used
to predict the velocity of expansion of late blight epidemics occurring over different
spatial scales including: within a field (zero order–30 m), across fields (first order–
300–800 km), or over several seasons (second order–1500 km) (110, 124, 125).
If the velocity of focal expansion increases with the scale of an epidemic, then
regional management strategies need to be in place that contain epidemics to zero
order epidemics to slow the spread of disease. Further experiments need to be done
to validate the proposed models with actual data collected on different spatial and
temporal scales since data used to validate the models were taken from epidemics
that progressed at different rates (110).

Spatial patterns of late blight epidemics on local and regional scales were stud-
ied using a combination of spatially referenced data and genetic markers to make
inferences concerning dispersal of the pathogen from primary inoculum sources
(2, 89, 136). In one study in the Netherlands, inoculum sources were identified
using a combination of disease gradient analyses, spatially referenced mapping,
and DNA fingerprinting of isolates (136). Most of the sources of inoculum in
conventional potato fields originated from nearby refuse piles that were upwind
of conventional fields (136). Aerial dispersal ofP. infestansfrom 34 to over
3000 m was documented from refuse piles to fields. Infested organic potato fields
also were implicated as a source of inoculum for aerial dispersal ofP. infes-
tans into nearby conventional fields in one season (136). A region gradient was
monitored across fields and data indicated that genotype-specific sources of in-
oculum that differed in aggressiveness were dispersed among fields. Additional
research using a combination of spatially referenced samples at different scales
and DNA markers could be used to track local and regional migrations of other
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aerially dispersedPhytophthoraspecies and could lead to improved management
strategies.

The spatial and temporal development of late blight epidemics were mapped
to determine if host-related differences in genotypic composition ofP. infestans
populations were a consequence of differential pathogenicity to potato and tomato
(66). Competition experiments were conducted with fields of potato by simultane-
ous inoculation with point sources of either a potato or a tomato isolate in different
locations in the field. Disease spread was monitored on a spatial scale in con-
tiguous quadrats and the genotype of the pathogen was determined after isolation
from infected plants. The experiments clearly demonstrated greater competitive
fitness of a potato genotype than a tomato genotype on potato in the field (66).
Differences in the genotypic composition of populations ofP. infestanson tomato
and potato have been observed in North Carolina fields (36).

Dispersal by Human or Invertebrate Activity: Mechanism V

Dispersal ofPhytophthoraspecies by human activity, including movement of
plant materials, or soils containing the pathogen, is responsible for migrations on
a global scale.P. infestanscan be dispersed in infected potato tubers or tomato
fruit (mechanism V). Movement of infected tubers from Mexico was responsible
for initiation of epidemics in Europe and the United States in the 1970s (38).
Dispersal ofP. infestansin infected plant material was probably responsible for
initial introductions of the pathogen into the United States and subsequently to
Europe in the nineteenth century from its ancestral home (38, 107). Many other
Phytophthoraspecies includingP. cinnamomiin Australia and the southeastern
United States,P. capsiciinto the southwestern United States, andP. palmivora
andP. megakaryainto Africa are believed to have been introduced into previously
noninfested areas in infected plant materials (30). Invertebrate vectors including
tent building ant species have been documented to move inoculum ofP. palmivora
vertically through infected cocoa trees (31). Chlamydospores ofP. cinnamomi
can be vectored by species of birds and termites (61). Snails and ants can vector
the avocado pathogenP. citricola between trees. In these examples, dispersal via
insects is generally on a local scale. The spatial patterns of Phytophthora disease
caused by human- or insect-vectored dispersal mechanisms have not been well
documented. Historical records and herbarium materials could be used to map
global movement of pathogens on a spatial scale (107).

WHAT STATISTICAL PROCEDURES CAN BE USED
FOR MEASURING AND DOCUMENTING
SPATIAL HETEROGENEITY?

What kinds of statistical methods can be used for spatially referenced data; that
is, data for which spatial coordinates are known? Some methods for nonspa-
tially referenced data are presented elsewhere (14, 16). Three general categories
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of methods are presented here including: (a) methods for evaluating the shape
and size of clusters and for testing spatial autocorrelation on a lattice; (b) methods
for estimating and modeling spatial autocorrelation as a function of between point
distance; and (c) methods for relating disease to possible explanatory variables
such as initial inoculum level and soil properties. We demonstrate several of these
methods on data from an experiment studying an epidemic caused byP. capsiciin
a commercial bell pepper field (103).

Testing Spatial Autocorrelation of Binary Data
and Describing Cluster Size and Shape

The positions of plants or quadrats in an agricultural field make up what is called
a lattice, a discrete set of points in some sort of spatial arrangement. The methods
in this section are concerned with the associations between points in the lattice
and points that are in specified neighborhoods relative to these points. By defining
neighborhoods in appropriate ways, it is possible to estimate and test associations
between points at any distance and spatial orientation in the lattice and to determine
the size and shape of clusters of similar points. For instance, we might be interested
in the correlation between adjacent plants within a row in the field. In this case, the
neighborhood for a given plant consists of the two plants immediately adjacent to
it in the same row. If we are interested in the association between two quadrats in
adjacent rows, we define the neighborhood of a quadrat to be the nearest quadrat
in the two adjacent rows. To test the association between one plant and another
plant three spaces down and two rows over, we define the neighborhood for each
plant in the field to be all plants that are three spaces down from it and two rows
over. Neighborhoods can also be defined across time periods, so that tests for
associations across space and time can be constructed in exactly the same way.

Testing Spatial Autocorrelation: BB and BW Statistics for Binary DataThe
type of statistic used to test spatial association is called a cross product statistic.
This is a general class of statistics that includes the familiar Pearson correlation
coefficient and, for spatial data, Moran’sI, Geary’sc, theBB andBW join-count
statistics (21, 123), and the 2DCLASS (42, 90) and 2DCORR (33) statistics. The
spatio-temporal autocorrelation coefficient described in Reynolds & Madden (99)
is also a member of this class. Binary spatial data, such as presence or absence of
disease, can be analyzed with the join-count statistics known as theBB andBW
statistics. These statistics measure association by counting up the number of pairs
of neighbors that are both diseased (BB) or the number of pairs in which one is
diseased and one is not (BW). The observed count is then compared to a reference
distribution to determine whether the association is statistically significant. The
BBstatistic is also the basis for two-dimensional distance class (2DCLASS) anal-
ysis and the closely related 2DCORR analysis, which are designed to detect the
presence of clusters in binary data. The join-count statistics can be generalized to
provide tests for qualitative data that take on more than two values.



P1: FUI

August 1, 2000 12:25 Annual Reviews AR107-22

NEW FRONTIERS IN SPATIAL ANALYSIS 555

The data needed to compute a join-count statistic are presence or absence of
disease (or inoculum) recorded on each plant (or quadrat) in a field and the spatial
coordinates for each measurement. TheBWstatistic, for a particular definition of
neighborhoods, is simply the number of pairs of neighbors in which one member
is diseased (black) and the other is healthy (white); in other words, the number of
black-white pairs. Positive correlation corresponds to lowBWvalues and negative
correlation corresponds to highBW values. This can be compared to the 95th
percentile of a theoretical reference distribution or to a distribution simulated from
the observed data by randomly permuting the locations of the diseased plants. If
a field hasn = b+ w locations on which measurements are taken and disease is
measured atb of the locations, a simulated field with the same dimensions and the
same amount of disease is generated by randomly allocating disease tob of then
locations. The procedure is to generate a large number of simulated fields in this
fashion. TheBWstatistic is then computed for each simulated field, and the set of
all theBWstatistics from the simulated fields and the observed field make up the
reference distribution. The hypothesis of no spatial autocorrelation is rejected if the
observedBWstatistic is smaller than 95% of the values in the reference distribution
(for a significance level of 5%). The alternative hypothesis in this test is that there
is positive spatial autocorrelation, so it is a one-sided test. Figure 3 (103) shows the
pattern of disease in quadrats at two different dates in a commercial bell pepper field
in North Carolina naturally infested withP. capsici(103). Treating each quadrat as
either containing disease or not, we can test for autocorrelation between adjacent
quadrats within rows. The number of adjacent pairs of quadrats in which one has
disease and the other does not at day 217 isBW= 72. BWvalues for 99 simulated
fields ranged from 161 to 198 (45). We conclude that there is significant positive
autocorrelation between adjacent quadrats within a row because BW is smaller
than 99% of the reference distribution.

Instead of comparingBWto a simulated reference distribution, an alternative is
to use a normal approximation for the distribution ofBWvalues. This approxima-
tion is appropriate as long as the lattice has a regular shape (i.e. not star-shaped or
other such odd shape), the number of points in the lattice is large, and the propor-
tion of quadrats containing disease is not close to zero or one. The cross product
statistics have the general form

r =
n∑

i=1

∑
j6 =i

wij yij , 1.

wherewij is a measure of the “proximity” between sitesi andj andyij is a measure
of how alike or different the responses are at sitesi and j. In the case of join-
count statistics,wij takes on the value 1 if sitej is in the neighborhood of site
i and 0 otherwise. However, other measures of proximity can be used in cross
product statistics; the inverse of the distance between the points is one commonly
used proximity measure. For theBWstatistic,yij is one if the sites have different
responses and zero otherwise; i.e. it is the squared difference of the responses.
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Figure 3 Spatial pattern ofPhytophthoraepidemics caused byPhytophthora capsiciin a
20 by 20 lattice of contiguous quadrats at (A) day 168 and (B) day 217, and two-dimensional
distance class array of the spatial pattern data at (C) day 168 and (D) day 217. Solid
squares= quadrats that contain at least one diseased plant; open squares= quadrats
that contain healthy plants. Solid circles= [X, Y ] distance classes with standardized
count frequencies (SCF) greater than expected atP< 0.05; open circles= a SCF less than
expected atP> 0.95.

For theBBstatistic,yij is the product of the responses of the two sites, giving a one
if both sites are diseased and zero otherwise. The expectations and variances of
cross product statistics, andBB andBWstatistics in particular, have been derived
(21) and are given in several places (21, 45, 123). For the bell pepper field of
Figure 3B the expectation and standard error of theBWstatistic were calculated
to be E(BW) = 179.9 and s(BW) = 10.2. The test statistic using the normal
approximation (with a continuity correction) is then

BW− E(BW)+ .5
s(BW)

= 72− 179.9+ .5
10.2

= −10.6.

This is far below the .0001 quantile of a standard normal distribution, so the p-value
is close to zero. As before, we conclude that there is significant correlation between
adjacent quadrats within the same row.
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Description of Clusters: 2DCLASS, 2DCORRThe aims of 2DCLASS analysis
are to answer the question of whether the inoculum or disease forms clusters and to
describe the size and shape of clusters (42, 90). The procedure is to compute theBB
statistic for every distinct distance class in the lattice, where a distinct distance class
is defined for each combination of within- and across-row distances. The distance
classes are displayed in an array with different symbols to indicate significantly
largeBBstatistics (Figure 3C,D). The 2DCLASS analysis of the disease incidence
data at day 217 (Figure 3B) is shown in Figure 3D. Plants up to 11 quadrats apart
within a row and three rows apart form clusters of correlated quadrats, forming
“core clusters” that are longer down rows than across rows. When there is more
than one cluster in a field, quadrats in one cluster are automatically correlated with
quadrats in the other clusters. In this particular field, quadrats are significantly
correlated with quadrats 8 to 12 rows away, with an average distance of 4 rows
between clusters. The 2DCLASS analysis was done several times over the season
(103). Comparison over time reveals that the season started with two clusters of
disease, which then spread along the rows.

All of the methods discussed so far are based on the assumption that observations
at different locations in the field are drawn from the same population and fluctuate
randomly about some mean that is stationary across the field. An example of
nonstationary means would be a large-scale trend from one side of the field to
another. Recently, a modification to the 2DCLASS analysis called 2DCORR has
been proposed (33) that assumes that the levels of disease across the field are not
necessarily drawn from the same population. In 2DCLASS analysis, it is useful to
label points by moving across the field in one direction, labeling a plant response
zi, as the head of a vector and its lag-h neighborzi+h, as the tail of the vector.
Because a field has finite extent, the set of head sites is somewhat different than
the set of tail sites. The 2DCORR procedure assumes that the means are different
in the head and the tail regions of the field and depends on the observed levels of
disease in the two parts of the field. The 2DCORR test asks the question, “Given
the observed levels of disease in the head and the tail regions and the sizes of
these regions, what is the probability of observingBB pairs of diseased plants
h units apart?” The 2DCORR procedure tends to find larger core clusters than
the 2DCLASS procedure. It does not tend to show correlations between clusters
because the mean levels of disease in the two regions have been subtracted out.

Testing Regularity: Spatial Analysis by Distance IndicesThere are many meth-
ods of analyzing count data (e.g. number of propagules, number of diseased plants
in a quadrat) to determine whether the distribution of counts is spatially random,
clumped, or regular (14). We describe just one test here, called spatial analysis
by distance indices (SADIE), because it explicitly uses spatial coordinates (96).
This test was developed to describe the spatial pattern of insects. In this test a
quantity called the distance to regularity is measured for the observed counts. Dis-
tance to regularity is defined as the minimum number of moves it would take to
make the counts at all locations equal. Each “move” is a movement of one insect
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(or propagule) over one unit of distance. A transportation algorithm (96) is used
for computing the number of moves to regularity from any observed pattern of
counts. The more highly aggregated a pattern of counts is, the higher the number
of moves required to achieve regularity. To construct a reference distribution for
the test, the observed counts are randomly permuted to the locations in the lattice
many times, and the number of moves to regularity is computed for each permu-
tation. The observed distance to regularity is then compared with the reference
distribution. Turechek & Madden (121) demonstrate the use of this test on the
pattern of strawberry leaf blight incidence in commercial fields.

Spatial Autocorrelation and Semivariograms
of Continuous Variables

Tests for Autocorrelation: Moran’s I and Geary’s c Spatial autocorrelation for
continuous variables, as opposed to binary variables, can be tested using Moran’sI
statistic or Geary’sc ratio. Moran’s I is closely related to the spatial autocorre-
lation coefficient and to theBB statistic; thus, Moran’sI is large if there is high
positive spatial autocorrelation. On the other hand, Geary’sc is closely related to
the semivariogram and theBWstatistic, and anegativevalue of Geary’sc indicates
a positive spatial autocorrelation. The equations for these statistics are

I =
1

Nh

∑Nh
i=1(zi − z)(zi+h − z)
1
n

∑n
i=1(zi − z)2

2.

c =
1

2Nh

∑Nh
i=1(zi − zi+h)

2

1
n

∑n
i=1(zi − z)2

, 3.

wherezi is the response at theith location andzi+h is the responseh units away,Nh

is the number of pairs of points that areh units away from each other, andn is the
total number of points in the lattice. The numerator of each of these statistics is
a cross-product statistic wherewij = 1 if j = i + h, i.e. if point j is h units away
from pointi, andYi,i+h = (zi −z)(zi+h−z) for Moran’sI, orYi,i+h = (zi −zi+h)

2

for Geary’sc.
To test for spatial autocorrelation using either Moran’sI or Geary’sc, standard-

ize the statistic by subtracting off its mean and dividing by its standard error, and
compare to the quantiles of a standard normal distribution,8−1. The hypothesis
of no positive spatial correlation at lagh (a one-sided test) is rejected at the 5%
significance level if

Moran’s I :
I − E(I )√

Var(I )
> 8−1

.95

Geary’sc:
c− E(c)√

Var(c)
< 8−1

.05.
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The means areE(I ) = − 1
n and E(c) = 1. The variances of Moran’sI and

Geary’sc are given in Upton & Fingleton (123) and Cliff & Ord (21). This normal
approximation is appropriate if the responses in the lattice are all drawn from the
same distribution so that they all have the same mean and variance. In addition,
the approximation requires the lattice to be relatively large and shaped such that
points do not have very small numbers of neighbors.

The cross-product statistics are tremendously flexible. The lattice does not have
to be rectangular; it can be irregularly shaped as long as there are a large number
of neighbors for each point. Missing data do not cause any problem, although
some computer software is written just for rectangular lattices without missing
data. It is also possible to remove the assumption of constant mean at all points of
the lattice. This is done by removing spatial variation in the mean before testing
for spatial autocorrelation, either by regressing on covariates or by median polish
(21). The expectation and variance for Moran’sIk, which is Moran’sI computed
on regression residuals, are given in Cliff & Ord (21).

Partial Autocorrelation Spatial correlations between points that are not imme-
diately adjacent to each other are partly caused by the accumulation of correlations
of neighbors between them. Partial autocorrelation measures the amount of corre-
lation betweenzi andzi+h that is not accounted for by the intervening correlations.
For example, the correlation between a plant in a quadrat of one row and a plant one
quadrat up and one row over is partially explained by the lag-1 correlation within
rows and the lag-1 correlation across rows. Any additional correlation, caused,
say, by disease spreading in a diagonal direction, is called the partial autocorrela-
tion. Computations of partial autocorrelations can help elucidate how far disease
spreads in different directions. The partial autocorrelation between point 1 with
coordinates (i, j) and point 3 with coordinates (i+ 1, j+ 1), given point 2 with
coordinates (i, j+ 1) or (i+ 1, j), may be estimated by

r13.2 = r (1, 1)− r (1, 0)r (0, 1)√
(1− r (1, 0)2)(1− r (0, 1)2)

,

wherer (1, 1) is Moran’sI for points 1 row and 1 quadrat apart,r (1, 0) is Moran’sI
for points in the same quadrat of adjacent rows, andr (1, 0) is Moran’sI for points
in adjacent quadrats of the same row. The partial autocorrelation for points that
are farther apart is given in Haining (50, p. 236).

Spatial Autocorrelation and SemivariogramsUnder the assumption that the
mean and variance are constant across the field, spatial autocorrelation between
two pointsh units apart may be estimated by a multiple of Moran’sI,

r (h) =
∑Nh

i=1(zi − z)(zi+h − z)∑n
i=1(zi − z)2

= Nh

n
I 4.

(49, p. 119). Spatial autocorrelation coefficients are usually computed for several
values of lag distanceh and plotted againsth. When viewed as a function of lag
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distance, this is called the correlogram. Reynolds & Madden (99) discuss autocor-
relation and partial autocorrelation parameters in a spatial-temporal autoregressive
model and provide more sophisticated estimators.

The semivariogram is another function for quantifying spatial association. It has
advantages for estimating and modeling spatial association, and is usually used in
geostatistical applications, rather than the covariance function. The semivariogram
is γ (h) = 1

2Var(zi − zi+h) and the classical estimator is

γ̂ (h) = 1

2Nh

Nh∑
i=1

(zi − zi+h)
2, 5.

which is the numerator of Geary’sc. If the variance is stationary across a field,
the covariance function and the semivariogram are mirror images of each other
sinceγ (h) = Var(z) − Cov(zi − zi+h). An idealized semivariogram shape is
shown in Figure 4A (47). The range of spatial autocorrelation is the distance
beyond which little spatial autocorrelation is evident. The range can be read off
the semivariogram as the lag distance where the curve almost reaches a plateau or
sill. Information about the trends and periodicities in the spatial pattern can also be
seen from the semivariogram. Larkin et al (65) computed the semivariograms for
four different directions for disease severity in the pepper field shown in Figure 2B
(103) (Figure 4B). The semivariogram for variation within rows has a linear shape
that never reaches a sill. This indicates that the correlation between one quadrat and
another decreases with lag distance within a row, but correlation is still evident even
15 quadrats apart. The semivariogram for variation across rows shows an oscillating
wave pattern. This is indicative of sets of rows with high disease severity alternating
with sets of healthy rows. Together, the within-row and across-row semivariograms
describe a pattern of disease consistent with more rapid spread down rows than
across rows. The shapes of the two semivariograms for the diagonal directions are
blends of the within- and across-row semivariograms and are more similar to the
idealized picture in Figure 4A (47).

If estimates of the range, the variance, and the microscale variance are desired,
parametric models may be fitted to the data, either by weighted nonlinear least
squares (24, p. 99) or, preferably, by restricted maximum likelihood (72, p. 306).
Equations for some of the most commonly used semivariogram models and infor-
mation about fitting them can be found in Gumpertz et al (47).

Regression Models for Spatial Data

In this section we briefly describe some types of models that are useful for relating
disease in one location to disease in other locations or to other explanatory vari-
ables. Software is currently available to fit some of these models, notably models
for normally distributed data, but methods are still under development for most of
them.
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Figure 4 (A) An idealized
exponential semivariogram
model with nugget effect
c0 = 1, sill c0 + c1 = 11, and
rangea + 10, (B) Semivario-
gram of disease severity caused
by P. capsiciat day 217 from
the field shown in Figure2B.
Solid square=within rows,
open circle= across rows,
open diamond= 45 degrees,
cross= 135 degrees.

Spatial Interaction Models In spatial interaction models, also known as Markov
random field models (21, 24), the level of disease or the probability of disease de-
pends on the level in the neighboring locations. Spatial interaction models are
appropriate for data on a lattice of discrete points. This type of model is most
useful when the aim is to describe the relationships among points in the lattice,
such as the dispersal of propagules from one quadrat to another. These models
are similar to autoregressive and moving average time series models, but the two-
dimensional nature of spatial relationships introduces some special considerations.
Cliff & Ord (21) and Cressie (24) present the details of simultaneous autoregres-
sive models, conditional autoregressive models, and moving average models for
normally distributed spatial data. These models can be fitted using commercial
statistical software (60). This type of analysis requires specification of a neighbor-
hood structure and a measure of proximity. Reynolds & Madden (99) discuss the
extension of these types of models to spatial-temporal data, and also give some
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recommendations about choosing neighborhood structures and proximity mea-
sures for modeling disease development. They demonstrate the use of spatial-
temporal autoregressive integrated moving average models (STARIMA) for
studying the development of an epidemic of leather rot of strawberry (99). In
this example, the change in logit (disease incidence) from timet to time t + 1
was found to depend on disease at the previous time in the same plot and in the
nearest neighbor plots, but larger lags in time or space did not seem to play a
role, which is consistent with the known mechanism of splash-dispersal of this
pathogen in strawberry. They found that a first-order moving average term was
necessary, which they interpreted to indicate that external factors such as weather,
which were not included in the model, also affected the incidence of disease (99).

Spatial interaction models have also been developed for spatial binary (pres-
ence/absence) data (5, 6). Software is not yet commercially available to fit this
type of model, which is called an autologistic model. The autologistic model was
recently used for studying the Phytophthora epidemic in bell pepper described
previously (46). The logit of the probability of disease on Julian day 177 [note:
logit(p)= log odds ofp = log( p

1−p)] was modeled as a function of soil water
content (%), pathogen population levels in the soil (number of leaf disks col-
onized out of five), and the numbers of diseased neighbors in each of four di-
rections: adjacent quadrats within rows, adjacent quadrats in neighboring rows,
diagonally up one quadrat and one row, and diagonally down one quadrat and
up one row. There was a clear visual correspondence between soil water content
and disease presence at day 168 (Figure 2A,C); (46). The fitted model picked up
this relationship and also found a correspondence between soil propagule levels
(Figure 2D) and disease at day 177 (data not shown) (46). The odds of disease
were estimated to increase 337% with a 5-percentage point increase in soil wa-
ter content. The odds of disease were estimated to be 47% higher if one leaf
disk was colonized than if none were, and to be nearly six times higher if all
five leaf disks were colonized than if none were colonized. Since the soil water
content and pathogen propagule levels are also spatially correlated, it was dif-
ficult to distinguish between effects of the explanatory variables and effects of
neighboring points, but disease presence in diagonally adjacent quadrats also ap-
peared to be a significant factor. A similar model was fitted to disease and soil
variables at two later dates in the season: on Julian days 195 and 217. The mag-
nitude of the effect of early season soil water content (day 174) and leaf disk
populations (day 171) on disease decreased throughout the season. Soil propag-
ule levels ofP. capsicimeasured at the second sampling time later in the season
(day 218) were a good indicator of disease presence on the day 217 sampling
date.

In a second field (data shown in Figure 1, Reference 46), soil water content and
pathogen propagule levels in soil were not good predictors of disease presence. In
that field, substantial within-row dependence of diseased plants between adjacent
quadrats was seen. The estimated odds of disease were nearly four times higher if
one neighbor was diseased than if none were diseased.
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Linear, Nonlinear, and Generalized Linear Models for Spatial DataGeostatis-
tical methods such as kriging, universal kriging, and cokriging use linear models
with spatially correlated errors (67). This type of model is appropriate for contin-
uous data, either normally distributed or transformed to normality, when the aim is
either (a) to estimate the effects of explanatory variables (also known as covariates)
or (b) to map or spatially interpolate to locations where the response variable was
not actually measured. In this type of model, the explanatory variables describe
the large-scale trends and the spatial correlation structure describes spatial pattern
at smaller scales that is not explained by the covariates. Commercial software is
currently available to fit both linear and nonlinear models with spatially corre-
lated errors (72). A wealth of climate and environmental data are available on the
Internet that can be incorporated into spatial models of disease patterns (8, 22).

A similar approach has been taken with generalized linear models for binary
and count data (1, 41, 80). These types of models have not yet appeared in studies
of root disease epidemics, but examples of spatial logistic regression are available
in the entomology and forestry literature. Related types of models for regressing
disease presence or inoculum levels on covariates while taking spatial correlation
into account, such as generalized linear mixed models and hierarchical models,
are currently under development.

NEW FRONTIERS FOR RESEARCH

Novel Methods of Disease Management

Research into the mechanisms of dispersal ofPhytophthoraspecies has led to the
development of new methods of disease management using ecologically based ap-
proaches. For soilborne species in the genus that are dispersed from rain splashing
or surface water movement, modifications in surface topography in fields by use
of living mulches, no-till cover crops, straw mulch, or pine bark mulch on the soil
surface can significantly reduce the spread of a number of splash-dispersedPhy-
tophthoraspecies (77, 106, 134). A rain simulator was used to quantify the effect
of various types of ground covers including soil, straw, sand, or plastic mulch on
dispersal ofP. cactorum(77). There was a significant interaction between rain in-
tensity and ground cover. Disease incidence exceeded 80% on black plastic, while
incidence was only 15% on straw mulch (77). Incidence of Phytophthora blight on
pigeon pea was greatly reduced by the presence of weeds in plots, which reduced
the splash dispersal of the pathogen from soil to above-ground plant parts (18).
Dispersal ofColletotrichum acutatumwas significantly reduced on a living mulch
of sudan grass compared to black plastic mulch (93).

The spatial dynamics of Phytophthora blight on bell pepper and the incidence of
disease was modified dramatically by suppressing specific dispersal mechanisms
(106). On bare soil plots, all mechanisms of dispersal are possible and final inci-
dence of Phytophthora blight on bell pepper was 71–72% in bare soil plots when a
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point source of initial inoculum was placed at one end of rows 4 and 5 (Figure 5A).
Black plastic mulch can act as a barrier to dispersal of soilborne inoculum under
the plastic to aerial parts of the plant (mechanisms III and IV) but can increase
splash dispersal of surface inoculum (mechanism III) in free water on the surface
of plastic (mechanism II). Disease onset occurred first and final disease incidence
was 42–79% in peppers grown on black plastic mulch with a sporulating fruit
placed on the plastic surface (Figure 5D). The presence of stubble from a cover
crop of wheat effectively reduced dispersal by blocking surface water and splash
dispersal mechanisms (mechanisms II and III). Final disease incidence was only
2.5–43% when stubble from a fall-grown cover crop was present and initial inocu-
lum was placed in rows 4 and 5 (Figure 5B). Metalaxyl is transported upward in the
plant, so protection of above-ground portions of the plant from splash-dispersed
inoculum is probably more effective than protection of roots and crowns in soil
from inoculum moving down the plastic in surface water (106). The fungicide
metalaxyl prevented across-row disease spread from point source inoculations but
did not suppress within-row spread of surface inoculum on plastic and root in-
fection (Figure 5C). Thus, studies on the spatial dynamics of Phytophthora blight
epidemics on bell pepper have also provided new information of the “mode of
action” of metalaxyl in the field.

Changes in surface topography and inoculum source type dramatically affected
disease gradients and within-row spread ofP. capsici(Figure 6). Soil in rows that
were either covered with black plastic, stubble from a rye-vetch cover crop or bare
soil was noninfested or infested with sporangia or oospores buried in the transplant
hole at the end of each row. Final disease incidence in bare soil plots was 100, 69,
and 10% in rows infested with sporangia, oospores, or noninfested soil, respec-
tively (Figure 6A). In contrast, disease incidence in plots planted in a rye-vetch
cover crop was 11, 12, and 3% and in plants planted in plots covered with black
plastic was 7, 20 and 18%, in rows infested with sporangia, oospores, or nonin-
fested soil, respectively. Disease gradients changed little over time in plants grown
in plots with stubble from a cover crop infested with sporangia inoculum since dis-
persal within rows by surface water was greatly reduced by the cover crop (Figure
6C). Changes in the disease gradient over time were most pronounced in plants
in plots grown with bare soil and sporangial inoculum, demonstrating significant
within-row spread on bare soil (Figure 6B). Note a delay in disease onset and lower
disease incidence occurred in bare soil plots infested with oospore inoculum, since
a lag time was required before oospores germinated and produced sporangia and
zoospores that were available for dispersal. Further work is needed on the influ-
ence of inoculum source type on the spatial dynamics of epidemic development
since it is often assumed that disease will be more severe with oospore inoculum.

Host genotype mixtures of potato were planted in a field study on late blight
to determine if the aerial dispersal of the pathogen could be reduced (2). Either a
susceptible cultivar was planted in a pure stand or two partially resistant cultivars
were arranged alone or in alternate rows with the susceptible variety in the field.
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Figure 5 Spatial pattern of epidemics caused byPhytophthora capsiciin bell pepper as
affected by cultural and chemical control strategies. Each solid rectangle represents an
infected plant within a row. Initial point sources of inoculum were at the ends of rows 4
and 5. Data shown are from one replication. (A) Bare soil in plots infested with inoculum
placed in the row, (B) no-till wheat mulch plus soil inoculum in the row, (C) black plastic
mulch plus surface inoculum and metalaxyl applied through the irrigation system, (D) black
plastic mulch plus surface fruit inoculum.
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Changing the spatial arrangement of cultivars in the field had a large impact on
disease. For the susceptible cultivar, disease progression was slower in the mixed
stands than in the pure stands and the disease remained focal in all the plots at all the
scoring dates. Disease severity was 30 to 50% lower in mixed than in pure stands
for the susceptible cultivar and yields were increased. For the partially resistant
cultivars, there was no advantage of planting in mixtures and yields were increased
in one of two years for mixed versus pure stands (2). The impacts of planting of
cultivar mixtures on the spatial dynamics of late blight epidemics needs further
experimentation in the field on larger spatial scales and represents an excellent
example of how a simple change in planting strategy can have a large impact on
an aerially dispersedPhytophthoraspecies.

Intersections of Population Genetics and Spatial Pattern Analysis: Molecular
Epidemiology The term molecular epidemiology has been used to describe a
new and exciting area in research in infectious diseases of humans (70). For plant
disease, the goal of a molecular epidemiologist is to identify the microorganisms
responsible for disease; determine their physical sources, their biological, evo-
lutionary, and phylogenetic relationships; their routes of transmission; and those
genes and accessory elements responsible for their virulence or pesticide resis-
tance (70). It is clear from this definition that this new area of research represents
a convergence of several traditional disciplines including population biology and
genetics, ecology, host parasite interactions, taxonomy, and epidemiology. This
new area of research will require disintegration of traditional disciplinal insularities
and development of multidisciplinary teams if it is to move forward in our science.

The contributions of population genetics to plant disease epidemiology and
management of a number of diseases have been reviewed recently (82). A wide
range of neutral and nonneutral genetic markers based on isozyme analysis, sero-
logical assays, DNA probes, RFLP, and PCR methods have been used in phylo-
genetic studies and to measure genetic variation in populations ofPhytophthora
species (23, 37, 58, 95). TheP. infestans–late blight example on potato has been
studied more extensively than other Phytophthora diseases. Genetic markers have
been used to monitor the population structure of isolates within and among fields
and to track global migrations of the pathogen (37, 38, 40, 82). Most of the modern
worldwide populations ofP. infestanswere dominated by a single clonal lineage
until the early 1980s (40). These data led to the “genetic bottle” hypothesis that
suggests that a single clonal genotype ofP. infestansmigrated from Mexico (where

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 6 (A) Disease progress of Phytophthora blight on bell pepper over time as influenced by
inoculum source type of either sporangia or oospores and cultural practice including bare soil,
plastic mulch, or stubble from a rye-vetch cover crop, and disease gradients from an introduced
point source of sporangia inoculum over six rating times in plots planted on (B) bare soil or (C)
stubble from a rye-vetch cover crop.
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most populations are very diverse and sexually reproducing) and was responsible
for the late blight epidemics of the nineteenth century in Europe (40). The spatial
structure of the population sampled in this study included isolates collected on
a global basis from many different fields in relatively modern times. Molecular
tools are now available that may enable us to discern migration patterns of historic
epidemics caused byP. infestansusing herbarium materials from the nineteenth
century (107).

Geostatistics and geographical information systems software (GIS) were used
to examine the range of spatial dependence of various genotypes ofP. infestans
(89). GIS software is used to store, manage, visualize, and analyze spatially ref-
erenced data. Most genotypes ofP. infestansshowed spatial autocorrelation in a
range of 13,000 to 20,000 m and some epidemics were dominated by only one
genotype in a given year, which suggests strong clonal reproduction (89). In other
regions in Mexico, populations of the pathogen are known to be quite diverse
within a given field, both mating types are found, and sexual reproduction is com-
mon (37). In many areas of the United States, new genotypes ofP. infestanshave
displaced old genotypes. If sexual reproduction becomes more common in fields
and the pathogen overwinters in plant debris, the initial spatial patterns of a given
genotype in a field could have large impacts on subsequent epidemic development,
particularly if the genotypes vary in sensitivity to fungicides or in fitness.

Pathogen genotype mapping using GIS could also be useful to track regional
occurrences of new genotypes of the late blight pathogen and dispersal from seed
producing regions to areas receiving potato seed tubers in order to forecast the
future population structure of epidemics.

Precision Agriculture Applications Precision agriculture can be defined as a
management strategy that uses information technologies to bring data from mul-
tiple sources to bear on decisions associated with crop production (87). Precision
agriculture has three components: capture of data at an appropriate scale and fre-
quency, interpretation and analysis of those data, and implementation of a manage-
ment response at an appropriate scale and time (87). There are obvious applications
of spatial pattern analysis in precision agriculture studies.

In precision agriculture applications, tractor mounted devices that are capable
of collecting spatially referenced soil samples and delivering spatially referenced
doses of a given fertilizer or pesticide are now possible (87). Ideally, one could use
these technologies to reduce excessive fertilizer or pesticide use in environmentally
sensitive areas. Currently, there is a dearth of spatially referenced data available for
most soilbornePhytophthoraspecies that could be useful for precision agriculture
applications. The hypothesis that these new technologies will lead to reduced
pesticide use has also not been adequately tested with data sets from soilborne
pathogens (35). Development of spatially referenced data sets forPhytophthora
species with a soilborne phase will require a shifting of research priorities from
controlled studies at experiment stations to “in field” assessments of pathogen
propagule densities, disease, and soil chemical and fertility factors at relevant
spatial scales (103, 131). Many of our existing data sets for soilbornePhytophthora
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species are two-dimensional and limited information is available on the occurrence
of these pathogens at different depths in soil.

The potential of precision agriculture is currently limited by the lack of appro-
priate measurement and analysis techniques for agronomically important factors
(87). Improved detection methods for specific soilborne pathogens that are lim-
iting to crop production are needed. For precision IPM applications, soil assays
need to be developed that enable quick qualitative or quantitative identification
of target species ofPhytophthoraor other soilborne plant pathogens. Ideally,
assays could be conducted in the field on tractor-mounted devices. Develop-
ment of additional specific primers to accurately identify individual species of
Phytophthoraare needed and optimization of the PCR assays for detection of
different propagule types in soil is important if these assays are to be used for pre-
cision agriculture applications (23, 68, 69, 105, 120). Few studies with soilborne
Phytophthoraspecies have addressed these needs.

GIS databases that contain spatially referenced data sets for a given field and
regionally are needed to make pathogen management systems viable on a spatial
scale. Multivariate analysis of soil physical, chemical, and biological components
will be needed in order to develop management options for precision agriculture
applications. Geostatistics and indicator kriging has been suggested to map the
probability of exceeding a threshold in a pest population for precision IPM appli-
cations (35). At the present time, these data sets are lacking for most soilborne
Phytophthoraspecies. Unlike insect populations, often very low densities of in-
oculum can cause high levels of disease for species ofPhytophthora(30, 101). A
very extensive regional assessment of soybean fields infested withP. sojaewas
conducted in the midwest (132).P. sojaepopulations were greater in conservation
till than conventional-till fields. Pathogen population data could be collected on a
spatially referenced scale within fields and include genotypic and phenotypic in-
formation. Precision IPM may be possible and potentially additional management
options could be deployed in addition to changes in tillage practices for control of
P. sojae(132).

CONCLUSIONS

Phytophthoraspecies can be dispersed by one of several mechanisms. An under-
standing of these mechanisms of dispersal has led to the development of novel
management strategies in the field. Dispersal in soil, via surface water, by rain
splash, by air, or via human or insect activity are the major dispersal mechanisms
for Phytophthoraspecies. Disease management strategies that rely on ecologically
based approaches have the potential in the long term to be more sustainable than
single input options (102).

Whether space is truly the final frontier is a matter of perspective. Certainly
for diseases caused by species ofPhytophthora, there are a number of new fron-
tiers that can be explored in the coming years to study the basic biology of these
devastating pathogens and develop new management options using spatial pattern
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analysis. The development of new technologies in the area of molecular biol-
ogy and information technology will enable us to gather more spatially refer-
enced data on pathogen populations and disease more rapidly at many spatial
scales from the individual cell, to the population in the field, to the ecoregion,
or globally. Analysis of these data using some of the statistical procedures dis-
cussed in this paper may lead to improved disease management in the twenty-first
century.
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