Effect of *Rhizobium japonicum* Nodulation on Severity of Phytophthora Root Rot of Soybean

JEAN E. BEAGLE-RISTAINO, former Graduate Assistant, and JANE F. RISSLER, Assistant Professor, Department of Botany, University of Maryland, College Park 20742

ABSTRACT

Phytophthora root rot of soybeans (*Glycine max*), caused by *Phytophthora megasperma* f. sp. *glycinea* (*Pmg*), is more severe on susceptible plants nodulated by *Rhizobium japonicum* than on plants not nodulated. Shoot growth and shoot and root dry weight means of inoculated Harosoy plants were lower and root rot scores were higher on nodulated plants than on those not nodulated. Disease severity of inoculated Harosoy 63 plants did not differ with or without nodulation. The *Pmg*-inoculated Harosoy plants had fewer nodules than did uninoculated Harosoy and Harosoy 63 plants, and *Pmg* colonized nodules of Harosoy but not Harosoy 63 soybeans.

The interactions of root-rotting fungi, nitrogen-fixing rhizobia, and leguminous plants have been the subject of many investigations (5,8,13,14,17,18). The effect of rhizobia and/or nodulation on the development of root rot in legumes is not clear. Higher levels of free-living rhizobia in soil are associated with decreased severity of Phytophthora root rot of soybeans (*Glycine max* (L.) Merr.) (17) caused by *Phytophthora megasperma* Dreschs. f. sp. *glycinea* (Kuan & Erwin) (*Pmg*) (11) and with the decreased incidence of Phytophthora root rot of alfalfa (18) (*Medicago sativa* L.) caused by *P. megasperma* Dreschs. f. sp. *medicagoe* (Kuan & Erwin). Rhizoctonia root rot of soybeans (caused by *Rhizoctonia solani* Kühn) is less severe on nodulated than on unnodulated soybeans (13). On the other hand, Gray and Hine (8) reported an increase in Phytophthora root rot of alfalfa in seedlings from rhizobia-treated seed planted in artificially infested soil and an association of root nodules with early infections.

These contrasting results and Tu's (17) report that increased levels of free-living rhizobia are associated with reduced severity of Phytophthora root rot of soybeans led us to compare the severity of Phytophthora root rot on soybeans with and without nodulation and to determine whether *Pmg* colonized root nodules. A preliminary report of this work has been published (2).

MATERIALS AND METHODS

Plant material. Seeds of soybean cultivars Harosoy and Harosoy 63, which are susceptible and resistant, respectively, to *Pmg* race 1, were surface disinfested (0.05% sodium hypochlorite for 10 min) and incubated for 3 days (27°C) on sterile, moist filter paper. Harosoy 63, used as a control in these experiments, is a near-isogenic cultivar to Harosoy differing in resistance to *Pmg* race 1 (1,12). Clay pots 10 cm in diameter were filled with vermiculite. Pot surfaces were covered with filter paper and aluminum foil, and pots were autoclaved for 1 hr. Foil was removed from pots, and 3-day-old seedlings were planted 3 cm deep in the sterile vermiculite. Seedlings emerged through a small slit cut in the filter paper and were thinned to one plant per pot. Experiments were conducted in a growth chamber at 25°C (14 hr of light) and 20°C (10 hr of dark) (7) under light intensities of 129 μE/m² per second at bench level. Seedlings were watered twice daily with tap water and fertilized once after *Pmg* inoculation with Crone's (16) nitrogen-free nutrient solution.

Rhizobial inoculum. Flasks of yeast-extract mannitol broth (19) were seeded with cells of *Rhizobium japonicum* Kirchner (Buchanan) (strain 110 from USDA Rhizobium Culture Collection) and incubated 4 days at 25°C on a rotary shaker (3 rpm). Cell concentration was determined from a standard curve of absorbance at 580 nm vs. number of cells per milliliter from counts on a Petroff-Hauser-Helber bacterial counting chamber. Inoculum diluted with tap water to provide concentrations of 10⁷ cells per cubic centimeter of vermiculite was poured onto one-half of the 3-day-old seedlings in pots at the time of planting. Unseeded broth diluted with tap water was poured onto the remaining seedlings in pots as a control.

Fungal inoculum. Race 1 of *Pmg* isolated from diseased soybeans in Maryland (3) was maintained on lima bean agar medium and transferred monthly. Fungal inoculum was prepared by filtering 5-day-old V-8 juice broth (V-8 juice at 200 ml/L, CaCO₃ at 3 g/L) cultures of the fungus, determining wet weight of mycelium, resuspending the mycelium in V-8 juice broth, and chopping mycelium for 15 sec in a Waring Blender (Waring Products Corp., Winsted, CT). Three-week-old, nodulated and unnodulated plants were removed from pots. Shoot height and number of nodules per plant were determined. The mean number of nodules per plant was equal at this time. Plants were repotted, and the root medium of nodulated and unnodulated plants was infested with chopped mycelium of *Pmg* in V-8 juice broth that had been diluted with tap water to provide a concentration of 800 mg of mycelium (wt wt) per pot. Other nodulated and unnodulated plants served as uninoculated controls.

Data collection and analysis. Two weeks after *Pmg* inoculation (5-wk-old

Plant Disease/June 1983 651

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. § 1734 solely to indicate this fact.

©1983 American Phytopathological Society
plants), shoot height (centimeters), shoot and root dry weight (milligrams), degree of root nodulation, and degree of Phytophthora root rot were determined. Shoot growth was the difference between shoot height measurements of 5-wk-old and 3-wk-old plants. Root rot per plant was rated (15) as follows: 0 = no apparent root rot, 1 = up to 35% root reduction compared with control, 2 = 35-75% root reduction, and 3 = >75% reduction. Root nodulation per plant was rated as follows: 0 = no nodules, 1 = 1-10 nodules, 2 = 11-20 nodules, and 3 = >20 nodules per plant.

The experiment was repeated four times, and the unbalanced data sets were analyzed for variance using the Statistical Analysis System General Linear Models procedure. The mean number of plants per treatment was 32. Means were separated by Duncan’s multiple range test.

Nodule histopathology. Root nodules excised from Pmg-inoculated and uninoculated 5-wk-old Harosoy and Harosoy 63 plants were fixed in 3% glutaraldehyde in 0.025 M sodium phosphate buffer (pH 7.4) for 24 hr, dehydrated in a graded ethanol series, and embedded in paraffin. Sections 10 μm thick were mounted on glass slides, dewaxed, stained overnight (about 18 hr in 1% safranin in 95% ethanol diluted 1:1 with distilled water), counterstained (0.5% fast green in 95% ethanol) for 20 sec, destained with clove oil:absolute ethanol:xylene (2:1:1) (10), and observed using bright-field optics on a Leitz Dialux 20 Research Microscope.

RESULTS AND DISCUSSION.

Results are presented as means for shoot growth, shoot dry weight, root dry weight, root rot ratings, and root nodule ratings from nodulated and uninodulated Harosoy and Harosoy 63 soybeans (Table 1). We conclude from these data that disease was more severe on nodulated, Pmg-susceptible plants in the greenhouse than on those plants not nodulated. Mean shoot growth and mean shoot and root dry weights of Pmg-inoculated Harosoy plants were significantly (P = 0.05) lower on nodulated than on uninodulated Harosoy plants. Growth parameters of uninodulated Harosoy plants and of plants in all the Harosoy 63 treatments were significantly greater than of nodulated, Pmg-inoculated Harosoy plants.

That mean root rot severity ratings of Pmg-inoculated Harosoy plants were significantly (P = 0.05) greater on nodulated than on uninodulated plants supports growth parameter data indicating less growth on Pmg-susceptible, rhizobial-nodulated Harosoy plants. The low root rot ratings of Pmg-inoculated Harosoy 63 plants are consistent with the resistance of this cultivar to Pmg race 1.

The lower root nodule scores of Pmg-inoculated Harosoy plants may be the result of destruction of both roots and root nodules by the fungus. Nodules on Pmg-inoculated plants were dark brown and often collapsed. The degree of root nodulation on Harosoy 63 plants was not affected by Pmg, and no nodule discoloration was noted.

P. megasperma f. sp. glycinea colonized nodules from Harosoy roots (Fig. 1A and B). Nodular outer cortex cells and portions of the sclerenchyma cell layer had disintegrated and were stained darkly in Pmg-colonized Harosoy nodules (Fig. 1A). Oospores were present in cortical parenchyma cells in the inner layer of the nodule and in bacte"
of alfalfa roots by *P. megasperma* with root nodules. Nodulation may affect the host defense mechanisms such that normal mechanisms for limiting fungal activities are altered.

Increased susceptibility of nodulated Harosoy plants to *Pmg* may be associated with the nitrogen level in the host tissue. Although no direct measurements of nitrogen content in nodulated vs. unnodulated host tissue were made, we consistently observed that 5-wk-old nodulated plants had dark green foliage, whereas unnodulated plants were pale green (indicative of a nitrogen deficiency).

Higher levels of nitrogenous fertilizers have been reported to increase the severity of many diseases caused by soilborne pathogens (9), including *Pmg* (4, 6). The mechanisms involved in increased disease severity resulting from the addition of nitrogenous fertilizers to soil may be similar to those involving the effect of nodulation on disease severity.

ACKNOWLEDGMENTS

Appreciation is expressed to James Elgin, Jr., Field Crops Laboratory, USDA, Beltsville, MD, for growth chamber space; to Larry Douglass, Department of Dairy Sciences, University of Maryland, for assistance with the statistical analysis; and to Thomas Devine and Deane Weber, Cell Culture and Nitrogen Fixation Laboratory, USDA, Beltsville, for soybean seed and cultures of *Rhizobium japonicum*, respectively.

LITERATURE CITED

