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Autologistic Model of Spatial Pattern of
Phytophthora Epidemic in Bell Pepper:
Effects of Soil Variables on Disease Presence

Marcia L. GUMPERTZ, Jonathan M. GRAHAM, and Jean B. RISTAINO

The autologistic model is a flexible model for predicting presence or absence of
disease in an agricultural field, based on soil variables, while taking spatial correlation
into account. In the autologistic model, the log odds of disease in a particular quadrat are
modeled as a linear combination of disease presence or absence in neighboring quadrats
and the soil variables. Neighboring quadrats can be defined as adjacent quadrats within
a row, quadrats in adjacent rows, quadrats two rows away, and so forth. The regression
coefficients give estimates of the increase in odds of disease if neighbors within a row or
in adjacent rows show disease symptoms; thus, we obtain information about the degree
of spread in different directions. The coefficients for the soil variables give estimates
of the increase in odds of disease as soil water content or pathogen population density
increase. In this problem, the soil variables may also be highly correlated over quadrats,
and disease incidence in within-row neighbors may be highly correlated with disease
incidence in adjacent-row neighbors. This collinearity makes estimation and interpreta-
tion of the parameters of the autologistic model more difficult. We discuss fitting the
autologistic model and tools for evaluating the aptness of the model.

Key Words: Binary response variable; Disease incidence; Markov random field; Pseu-
dolikelihood estimation; Spatial correlation.

1. INTRODUCTION

Statistical models of the spatial patterns of disease in an agricultural field can be
useful for understanding dispersal mechanisms and for developing methods of control
of disease. This paper describes and demonstrates the use of the autologistic model for
spatial pattern of Phytophthora epidemics in bell pepper. There are three features of the
autologistic model that make it well suited to the study of spatial patterns of disease: (1)
it applies specifically to binary response variables such as disease presence or absence;
(2) explanatory variables can be incorporated into the model; and (3) the probability of
disease in a quadrat depends explicitly on whether the neighboring plots are diseased.
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Several different kinds of statistical models have been proposed for describing spatial
patterns of disease. The ones that have received the most exposure in the phytopathology
literature have been models designed for continuous response variables.

For example, spatio-temporal autocorrelation analysis, described in Reynolds and
Madden (1988), and kriging (see Lecoustre et al. 1989) have been proposed for describing
spatial correlations in disease epidemics. These methods involve modeling the spatial or
spatio-temporal covariance structure of the disease data using autoregressive-moving
average type models and variogram models, respectively. They are used to study the
effects of distance (and time) on the spread of the epidemic and to map the disease.
These statistical methods were developed for response variables that are measured on a
continuous scale, such as yield. Although designed for data measured on a continuous
scale, they have also been applied to binary and categorical data.

Logistic regression is often used to model nonspatial binary data. Spatial correlation
can be incorporated into logistic regression models in two general ways: (1) by explicitly
specifying both the spatial correlation structure and the model for the expected prob-
ability of disease; or (2) by modeling the probability of disease in a given quadrat as
depending on the disease status of neighboring quadrats. Albert and McShane (1995) pre-
sented a type of logistic regression model called a marginal model, in which the spatial
autocorrelation pattern is modeled explicitly, not by conditioning on the response of the
neighbors. They modeled lesion incidence in brain scans using a method of estimation
that takes advantage of having separate brain scans for a large number of individuals.
This article takes the second approach, focusing on the autologistic model, which was
originally developed by physicists to model electron spin at each site in a magnetic field
(Cressie 1991). Besag (1972, 1974) developed much of the statistical theory of autologis-
tic models and gave some examples involving plant disease. Some autologistic models
incorporating time have also been proposed (Besag 1977; Chadoeuf et al. 1992). For ex-
ample, Besag (1977) demonstrated the use of the autologistic model to describe incidence
of foot rot in endive as a function of disease in neighboring plots at both the current and
the previous times. The autologistic model has also been extended to ordered categorical
data, such as disease ratings on a scale of 1 to 4 (Strauss 1992). Smyth et al. (1992)
applied a similar model to progression of anthracnose in tropical pasture legumes. Wu
and Huffer (1996) used an autologistic model with covariates to model the distribution
of plant species in Florida.

Most of the studies just cited modeled spatial pattern of disease as a function solely
of proximity of diseased plants or of spatial and temporal relationships, but did not
incorporate other environmental information. Measures of pathogen population density in
the soil and environmental covariates, such as soil water content, microclimate variables,
elevation gradient of the field, soil nutrient concentrations, and soil compaction, should
provide additional information for predicting the presence or absence of disease and
elucidating the conditions under which the epidemic spreads. Concomitant information
can theoretically be incorporated into any of the spatio-temporal autocorrelation, kriging,
and logistic regression models.
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In the autologistic model presented here, the log odds of disease presence in a
particulaf quadrat, also called the logit,

; I Pr(disease present) )
logttGai=tn Pr(disease absent) /'

;s modeled as a linear combination of soil water content and pathogen population f:lensity
in the quadrat, and disease presence in neighboring quadrails. In the pext secuon~ we
describe the autologistic model with covariates in more detail. Iln Section 3 we briefly
discuss available methods of estimation of the parameters. Secﬁnon _4 (-kmonslrates the
fitting and interpretation of this model for a Phyt.ophthora' epidemic ll’?_l tv»lfo naturaflly
infested fields of bell pepper, and Section 5 discusses some issues that arise in assessing
the fit of the model and the interpretation of the results. o .

The focus of this article is on demonstrating the use of the autologistic model using
methods that are currently available to practitioners. The aim is to. demonstr-ate real
applications of the model and interpretation _of the parameters. The interpretations are
the same regardless of the method of estimation employed.

2. THE AUTOLOGISTIC MODEL

The autologistic model is a simple generalization to spatial data of the starfdard
logistic model for independent binary data. In the standard logistic model for pmary
data, the log odds of disease are modeled as a linear function of some regressor variables,

X],‘..,XT:

logit(p) = In (I}U——p) =h+6Xi1+...+8X = Zﬁka, (2.1)
- k=0

where p is the probability of a “success” (e.g., the probability of disease being .presem).
For a good exposition, see Hosmer and Lemeshow 1989. The standard model is appro-
priate in any experimental setup in which all observations are independent. Eor _e>_cample,
if plants were grown in pots and inoculum were introduced into ez:.lch pot individually,
the observations would be independent of each other. In this situation, the standard lo-
gistic model (2.1) would be appropriate and the parameters of model (2.1), Bo,-- -, Br,
could be estimated by maximum likelihood using standard software such as SAS PROC
LOGISTIC (SAS Inst. 1996). .

In logistic regression models, the regression coefficients quantify the effects of
changes in the covariate values on the odds of disease. In model (2.1), the log odds
of disease in a quadrat appears as a function of k regressor variables, X, ..., X. .If X
increases by one unit while the other variables remain constant, the log odds of disease
increases by /3; units. The odds ratio for an increase of one unit is defined as

odds of disease if X; =z + |
odds of disease if X} ==z

odds ratio =

Thus, the odds ratio is €. For example, 4, = .4055 corresponds to the odds ratio
e’ = 1.5 for increasing X by one unit, and the odds of disease increase 50% for every

unit increase in X.
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In a disease epidemic in an agricultural field, we would expect quadrats to be spatially
correlated. The autologistic model incorporates the spatial autocorrelation by conditioning
the probability of occurrence of disease in a quadrat on disease presence in neighboring

quadrats. The definition of neighboring quadrats is very flexible and can be tailoreg

to the particular situation under study. For rectangular lattices there are some standard
systems of neighbors. A first-order system includes only the four adjacent quadrats in the

set of neighbors, two within the row and two in adjacent rows; a second-order system
includes the four diagonal neighbors in addition to the quadrats of the first-order system;
a third-order system includes quadrats two rows or columns away (Besag 1974):

* * * * E
* X * *® X * % w5 ¥ ok
* * * * * *
First-order Second-order Third-order

However, it is not necessary to use the standard neighborhood systems and it is not
necessary that the lattice have any regular shape. What is required is that a set of neighbors
be defined for each quadrat in the lattice, and if quadrat 7 is a neighbor of quadrat j, the
converse is also true.

For binary data, if the response at site i depends in a pairwise fashion on the observed
number of neighbors with disease present and on r covariates, then the conditional
probability of a particular response, y; = 1 (disease present) or y; = 0 (disease absent),
is

Pr(Y; = y;|zi, y:, 5 € N, ) = cxP{ZZIO Brziny: + ZJEM ViYiys )
i Yilx;, s J 1 T+ CXP{ZZZO Jgkl‘ik n ZjeNi ‘)/’,yj} s

where the set of neighbors of the ith site is denoted N;. Since v; takes the value 1 if
disease is present, the log of the odds of disease being present is:

(22)

.
logit(Pr(Y; = 1)|z;,y;,for j € N;) = Zﬁkﬂfik + Z Vil
k=0 JEN;
which looks just like the standard logistic model (2.1), with the addition of terms for
disease in neighboring quadrats (Y;). For example, an autologistic model with two sojl
covariates X and X, and first-order spatial dependence where the spatial dependence
is the same magnitude down rows and across rows, would be

logit(Pr(Y; = 1)|zi1, 20, 8;) = By + Biziy + Pazip + Y184,

where s; = 3°._\ y; is the sum of the disease values in the four neighbors. In this
model the parameters (3, and 3, quantify the effects of the covariates given the disease
status of the neighbors. For example, if soil moisture is a covariate, its parameter would
measure the log of the increase in odds of disease that was due to increasing moisture after
accounting for the effect of disease in any neighboring quadrats. This type of model has
flexibility in that neighbors may be defined in any way that makes sense, the observations
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do not necessarily need to be taken on a rectangular lattice, and covariates (Xik) can be
incorporated. The covariate terms in the autologistic model are not necessarily required
to enter in a linear fashion.

What is the effect of fitting model (2.1) when in fact the autologistic model is
appropriate? We can gain some insight by looking at a linear autoregressive model for
continuous response variables, which is analogous to the autologistic model for binary
response variables. In the linear conditional autoregressive model, y = YWy + X3 + ¢,
where W is a symmetric matrix defining neighbor rclationships'and Wy represents the
response in neighboring quadrats, the effect of ignoring the neighbors depends on whether
the covariates X are spatially correlated. The ordinary least squares estimator obtained by
regressing y on X is 8= (X'X)"' X'y = B+ 4(X'X) ' X'Wy + (X'X)"'X'e. For
any given covariate matrix X, this has conditional expectation 3 + v(X'X) ™' XW(I —
~W)~!'X 3. The magnitude of the second term depends on the spatial pattern of X. If
each covariate is set up in a spatially balanced design so that WX = 0, the second term
is 0. On the other hand, if the covariates are spatially correlated, the effect of regressing
on X and ignoring the spatial dependence is usually to produce estimates of the effects
of the covariates that are too large, because some of the effect that is due to disease in
neighboring quadrats is attributed to the covariates. We see a similar effect when fitting
autologistic regression models. A small simulation demonstrating this type of effect is
presented in Section 5.

Autologistic models for infinitely large lattices exhibit an unusual feature, called
“long-range dependence,” when the spatial dependence parameters, -, are large. Under
long-range dependence, the correlation between two sites decreases with distance but
never becomes zero, no matter how far apart the sites are. Infinitely large lattices that
exhibit long-range dependence consist almost entirely of either zeroes or ones, with
a speckling of the other. This feature of autologistic models has made them useful
for modeling physical processes that undergo phase transition, such as magnetism and
crystallization.

This property of long-range dependence occurs when the spatial dependence pa-
rameter(s) exceed a particular “critical value.” Critical values have been derived for the
simplest autologistic models—those with 50:50 odds of zeroes to ones, no covariates,
and a first-order system of neighbors (Pickard 1977). For example, for the model logit
(Pr(Y; = 1| 5;) = a + 7s;, where s; is the sum of the four neighbors, a field exhibits
long-range dependence if the average correlation between neighboring sites, p, is .71
or higher. This corresponds to v = 1.76 and o« = —2+. For a similar model—which
allows the spatial dependence to be different in two directions, with s; = sum of two
within-row neighbors and s; = sum of two adjacent-row neighbors, logit Pr(Y; = 1] s;;,

8i2) = a + 151 + 7282 and o« = —(7y, + 2 )—some pairs of critical correlations and
parameter values are given in Table 1 (computed based on Pickard 1977). The restriction
that « = — (-, +2) ensures that the overall odds of zeroes to ones is 50:50. It is unclear

whether phase transition occurs if & # (7, + 72) or covariates are included in the model.
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Table 1. Critical Values Above Which Long Range Dependence Occurs in the Model logit Pr(Y; = 1

| Si1, Siz) = o+ 7181 + 72 Siz With a = —(yy + )
Spatial autocorrelations Spatial dependence parameters
P1 P2 Y1 Y2
.64 .89 .40 4.64
.65 .81 .81 3.23
.67 .76 1.21 2.45
71 a1 1.76 1.76

3. METHODS OF ESTIMATION

The method of choice for estimating parameters of the ordinary logistic regression
model is maximum likelihood. In the autologistic model for spatially correlated responses,
the observations are not independent and it is not possible to write the likelihood function
in closed form. A new method of estimation, Markov chain Monte Carlo maximum likeli-
hood (MCML), has recently been developed which approximates the likelihood function
using Monte Carlo sampling (Geyer 1991). Monte Carlo maximum likelihood provides
estimates that are consistent and asymptotically normal; however, special conditions are
necessary for asymptotic normality to hold when the spatial dependence parameters are at
the critical values (Gidas 1993). Currently, however, commercial software is not available
for computing Monte Carlo maximum likelihood estimates.

In this article, all parameters have been estimated using a method called maximum
pseudolikelihood. Besag (1975) coined the term “pseudolikelihood” (PL) for a function
that would be the likelihood were the data independent, the product of the conditional
probabilities in expression (2.2). Maximization of the pseudolikelihood function as though
it were a true likelihood function is simple to implement because it Just involves fitting
the autologistic model using standard software for ordinary logistic regression (Strauss
1992). For example, to fit an autologistic model with covariates X 1 and X5, and first-order
spatial dependence that is the same magnitude within and across rows, the procedure is
simply to compute the sum of four neighbors for each site, s; = 3 jen, Y7, and then fit
the model logit (Pr(Y; = 1 lril,xiz,si)) = o+ Bz + Bazin + ¥$; using a program
such as SAS PROC LOGISTIC. Note, however, that the standard errors that are printed
out by ordinary logistic regression software are not appropriate for correlated data, and
the usual likelihood ratio-type statistics do not have asymptotic Chi-square distributions
(Graham 1995). We present a method of computing parametric bootstrap standard errors
in Section 4.

Parameter estimation for the autologistic model is more difficult when the spatial
dependence parameters approach the critical values than if the spatial dependence is
smaller. Both pseudolikelihood and MCML estimates are consistent regardless of whether
the parameters are at the critical value or not (Geman and Graffigne 1986: Gidas 1993),
but near the critical value, variability of pseudolikelihood estimates can be much higher
than MCML estimates (Geman and Graffigne 1986; Geyer 1991). If the within-row
Or across-row correlations are near or above these values, pseudolikelihood estimates
are not recommended. Otherwise, pseudolikelihood estimates are almost as efficient as
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MCML estimates (Odencrantz 1988; Geyer 1991; Graham 1995). The big advantage of
pseudolikelihood estimation is its computational simplicity and availability, with little

sacrifice of precision.

4. APPLICATION TO PHYTOPHTHORA EPIDEMIC

4.1 BACKGROUND

The pathogen Phytophthora capsici Leonian causes lesions on the crown, stem,
and leaves of bell pepper, and rapidly causes the plant to die. Ristaino et al. (1993,
1994) and Larkin et al. (1995) described the spatial pattern of Phytophthora epidemics
in six naturally infested commercial bell pepper fields. Ristaino et al. (1994) found that

Z)sn ‘ the spatial correlations of disease symptom types down rows and across rows contain
on, information about whether the disease is spread by water, root-to-root contact, or aerially.
K- They demonstrated that disease generally tends to form longer clusters along rows than
on 1 across rows, and from this concluded that movement of surface water within furrows is
» important in spreading inoculum. The spatial and temporal order in which wilt occurs
e \ and stem and crown lesions develop provide further clues to the methods of dispersal
it (Ristaino et al. 1994). It appears that root infections spreading to the crown are the most
le ] frequent paths of infection. Stem, leaf, and fruit infections were much rarer or nonexistent,

indicating that splash dispersal was not as important for spreading inoculum in the field
n studied. Larkin et al. (1995) presented spatial correlograms and crosscorrelograms for
" disease severity and soil variables in the Phytophthora study. The correlograms show

that the distance over which quadrats are correlated increases steadily over time and
reveal some correspondence between disease and the soil variables.

Soil water content measurements and leaf disk assays of soil pathogen population
were collected for two of the naturally infested commercial bell pepper fields that were
studied by Ristaino et al. (1993) (described in detail therein). Each field was a square
lattice of 20 rows by 20 quadrats with 2 to 3 bell pepper plants per quadrat. The response
variable of interest was presence or absence of disease in a quadrat. If any plant was
wilted, dead, or had lesions on stem, crown, or leaves, disease was considered to be
present in the quadrat. Disease presence or absence was recorded for each quadrat on
nine dates throughout the growing season, from 6/16/92 to 8/5/92. Soil water content
(%) was measured in each quadrat of field 1 on 7/2/92 and field 2 on 6/22/92. The
soil pathogen population, assayed as the number of leaf disks colonized out of five, was
measured in each quadrat on two dates: 6/29/92 and 7/29/92 for field 1, and 6/19/92 and
8/5/92 for field 2.

For one of the fields (field 2), the initial pattern of disease appeared to follow the
soil water content pattern (Fig. 2). For the other field (field 1), no such patterns are
obvious from the maps of soil water content and number of leaf disks colonized (Fig. 1).
The patterns of soil water content were quite different in these two fields. Field 2 had a
distinct wet corner and disease was present in most of the quadrats in this corner from the
first sampling date. Field 1 was wetter overall (mean water content = 10.8%, compared
to field 2 mean water content = 8.8%) but more homogeneous, with no distinct wet or
dry areas (field 1 std. dev. = 1.82, field 2 std. dev. = 2.39).
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4.2 MODELS

For each field we fit three models to the data for the first date after soil water
content was measured, 7/6/92 and 6/25/92, respectively. The first model (MODEL1) is a
logistic regression model of the effects of soil Water content and soil pathogen density on
disease presence, ignoring spatial correlation. This is a preliminary model used to check
whether the soil covariates alone can explain the spatial patterns. If spatial correlation is
still present in the residuals after fitting MODEL1, we conclude that the soil covariates
alone are not sufficient to account for the observed spatial variability. In some settings,
spatial correlations can be completely eliminated by regression on covariates. In the
present application, however, disease is actually spread from one plant to another, so it
is likely that, even after taking the soil variables into account, the disease status of the
neighboring quadrats could be an important predictor of disease presence. The second
model (MODEL2) is a second-order autologistic model with soil water content and the
first leaf disk assay as covariates. This model is constructed by adding terms for disease
in adjacent quadrats within the row (W), in adjacent rows (A), and diagonally (D) to
MODELI1. The third model (MODELS3) is a pure autologistic model without covariates.
Under MODELS3 predictions are based solely on disease in the neighboring quadrats; this
model is used to check whether the soil covariates can be dropped from MODELS2.

The three models are:

MODELI: logit(p;;) = Bo+ 3 M;j+6: L, (4.1)
MODEL?2: logit(p;;) = G+ 3, Mij+B:L;; + Wij+mAij +73 Dijy +%1Di52, (4.2)
MODEL3: IOgit(pi]’) =Bo+ IfViJ +'YQAU +’)’3D,‘_7| +"{4DU2. (4.3)

In the three models, M = soil water content, L = number of leaf disks colonized in
June, and the subscripts i and J indicate row and quadrat, respectively. The numbers
of diseased neighbors are indicated by W;; = Yiio + Y; j+1., the number of diseased
quadrats of the two adjacent quadrats within the same row: A;j = number of diseased
quadrats of the two adjacent quadrats in neighboring rows: D;j1 = number of diseased
quadrats of the two diagonal quadrats in the (1,1) and (—1,—1) direction; and Dy =
number of diseased quadrats of the two diagonal quadrats in the (=11) and (1,-1)
direction. The types of neighbors of site 7}, are diagrammed in Table 2; notice that the
rows are numbered from right to left to match the actual field layout.

Including four separate terms for neighbors allows us to examine whether correlations

across rows are as strong as those within rows and whether there are any diagonal
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Table 3. Field 1 on 7/6/92: Parameter Estimates and Proportion of Quadrats Misclassified From
Fitted Models

Soil  6/29 Within- Across-
water Jleaf  row rows Diagonal Diagonal
Model intercept content disk disease disease (1,1) (—1.1) Missclass.t

MODEL1 -2.70 .0918 .178 42/254
MODEL2 -3.91 .103 .0646 1.33 —.739 .805 1.08 40/254
MODEL3 -2.81 1.36 —.670 .730 1.09 40/256

" Total number of quadrats is 16 x 16 = 256. Models that involve soil water content were fitted
to 254 quadrats because 2 water content values were missing from the inner 16 x 16 lattice.

gradients in the field. If we thought that there was a gradient in a different direction,
such as the (1,2) direction, we could add terms to the model to capture the expected
pattern.

All models were fit to the inner 16 x 16 lattice of 256 quadrats so that models
involving adjacent quadrats and quadrats two spaces away could be accommodated. In
each field, one quadrat had a measured water content value greater than 25%, which was
much higher than the surrounding water content values, and so was omitted from all
regression and correlation computations. In addition, in field 1, five water content values
were missing, and in field 2, four water content values were missing.

Spatial correlations were computed for the original data and for Pearson residuals
after fitting each model. The lag one autocovariance between adjacent quadrats within a
row is computed as the covariance between the “tail” and “head” variables, where the tail
variable is the response in quadrats 3 through 17 and the head variable is the response
in quadrats 4 through 18:

18 17 18 17 18 18

| 1 1
C(1) = mzzywyé.ﬁl - (WZZ%J)(WZZ%)

1=3 §=3 i=3 j=3 i=3 j=4

The spatial autocorrelation is computed by dividing C'(1) by the product of the “head”

and “tail” standard deviations. Pearson residuals,
pij (1 = pij)

Table 4. Field 2, on 6/25/92; Parameter Estimates and Proportion of Quadrats Misclassified From
Fitted Models

Soil  6/19 Within- Across-
water leaf row rows Diagonal Diagonal

Model  Intercept content disk disease disease (1,1) (—1,1) Missclass.t

MODEL1 -9.10 .706 .460 23/253
MODEL2 -6.15 .295 .387 .292 .226 1.20 .837 23/253
MODEL3 -3.26 .550 .199 1.39 1.22 22/256

" Total number of quadrats is 16 x 16 = 256. Models that invalve soil water content were fitted
to 253 quadrats because 3 water content values were missing from the inner 16 x 16 lattice.
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Table 5. Parametric Bootstrap Standard Errors of Pseudolikelihood Estimates for Field 1 on 7/6/92,
MODEL3; and Field 2 on 6/25/92, MODEL2

Soil Leaf Within-  Across-
water dlisk row row Diagonal  Diagonal
Intercept  content assa y disease disease (1,1) (—-1.1)
Field 1 SET .40 ;55 .69 .53 .54
Field 1 naive est. .32 .32 42 .36 .30
Field 2 SE11 1.71 .20 .18 .75 .78 .65 .60
Field 2 naive est. 1.35 14 .16 47 50 .43 46

NOTE: The naive standard errors were computed in SAS PROC LOGISTIC.
" Standard deviation of pseudolikelihood estimates from 487 Monte Carlo runs; 13 runs did not converge.
™" Standard deviation of 500 Monte Carlo runs.

are standardized differences between the observed response (Y = 1 for disease present,
Y = 0 otherwise) and the predicted probability of disease.

The parameter estimates 3, and the percent of quadrats misclassified for each fitted
model are shown in Tables 3 and 4. For any given quadrat, if Pij > .5, disease was
predicted to be present. The misclassification rate is the proportion of quadrats for which
the predictions do not match the disease status actually observed.

4.3 RESULTS

Before doing any regression, disease incidence showed moderate correlations (r =
.30 and » = .38 in fields 1 and 2, respectively) between adjacent quadrats within a row
on the last sampling date. After fitting the logistic model for the effects of soil water
content and soil pathogen population level, ignoring spatial correlations (MODELI1), the
Pearson residuals showed correlations between neighboring quadrats within a row of .27
and .12 for fields 1 and 2, respectively. The reduction in correlation from .38 to .12
in field 2 indicates that a large part of the spatial correlation in disease incidence may
be attributable to the environmental variables of soil water content and Phytophthora
population level. In field 1, on the other hand, the correlation between adjacent quadrats
does not appear to be explained by the soil variables. '

Parameter estimates for MODELI1, MODEL2, and MODEL3 are given in Tables 3
and 4, and standard errors are in Table 5. In field 1, substantial within-row dependence
was seen and some diagonal trends across the field may also have been present. The
estimated odds of disease were nearly four times higher if one neighboring quadrat
within the row was diseased than if the two neighbors were disease-free (MODELS3,
Tables 3 and 5, 4, = 1.36, 5(%1) = 0.55, odds ratio e = 3.9), with all other variables
held constant. The soil water content and leaf disk data did not appear to be helpful in
predicting disease presence or absence, as the odds ratios for water content and leaf disk
assay were both close to one (3 close to 0) in MODEL2.

In field 2 there was a clear visual correspondence between the maps of soil water
content and disease incidence (Fig. 2), with the southeast corner having both high soil
water content and high disease incidence. On 6/25/92, the estimated odds of disease
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Table 6. Field 2: Parameter Estimates for MODEL2 on Three Sampling Dates

6/22/92 6/19/92 8/5/92 Within- Across-
water leaf disk leaf disk  row rows  Diagonal Diagonal
Date Intercept content assay assay disease disease (1,1) (—1,1)

6/25/92 —6.28 .30 .39 .13 .26 .26 1.23 79
713/92 -4.42 .13 .35 1 .84 —.55 .95 1.41
8/04/92 —4.51 11 A7 .49 .33 1.10 .22 1.50

increased 337% with an increase of 5 percentage points in soil water content (Tables 4
and 5, ) = 295, s(B;) = .20, % = 4.37). The estimated odds of disease was 50%
higher if one leaf disk was colonized and nearly six times higher if five leaf disks were
colonized than the odds if no leaf disks were colonized. At the 6/25 sampling date, the
soil population assay had the largest effect relative to its standard error. All the spatial
parameter estimates except for the diagonal (1, 1) direction were either smaller than their
standard errors or similar in magnitude (Table 5).

A second-order autologistic model with three covariates was fitted to the field 2
data for two sampling dates in addition to 6/25/92: 7/13/92 and 8/4/92 (Table 6). The
relationship with water content showed up most strongly on 6/25/92, which was just three
days after the soil water content measurements were taken, and decreased as time went
on. The relationship between disease and the soil pathogen level in the 6/19/92 assay,
as indicated by the number of leaf disks colonized, was fairly strong early in the season
and weak late in the season. At the end of the season, the leaf disk assay of 8/5/92 was
a better predictor of disease than the early leaf disk assay, and the odds of disease were
estimated to increase about 60% if the number of leaf disks colonized was increased by
one. By the end of the season, 42% of quadrats were diseased, the spatial dependence
Was quite high, and the number of diseased neighbors in any one direction was highly
associated with the number in every other direction, making it difficult to estimate the
Spatial dependence parameters accurately.

4.4 STANDARD ERRORS

Parametric bootstrap standard errors were obtained by generating 500 lattices from
the autologistic model with parameters set equal to the pseudolikelihood estimates from
field 1, MODEL3 or field 2, MODEL2. The values of soil water content and the leaf
disk assay were fixed at the values observed in the field.

Pseudolikelihood estimates were computed for each of the 500 lattices, and the
Standard deviations of these 500 estimates are reported in Table 5. For comparison, the
Standard error reported by SAS PROC LOGISTIC is also given. In these two examples,
the “najve” estimate produced by standard logistic regression software always underes-
timates the standard errors for the spatial dependence parameters.

The 500 lattices for each model were generated by Gibbs sampling (e.g., see Gilks et
al. 1996). This is computer intensive, but can be done fairly easily in a matrix program-
Ming language such as SAS PROC IML. One simple procedure is as follows. Starting
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with the observed data lattice, cycle through the quadrats, updating each quadrat in tum,
To update a particular quadrat, assign it disease status y=1lory=0, according to the
probability function in expression (2.2), using the values of the covariates and the cyp

sequence of pseudolikelihood parameter estimates that cover the entire range of possj.
ble values (called an ergodic Markov chain) in such a way that the contribution of the
correlations between lattices becomes negligible as the length of the chain increases [see
Cressie (1991) for discussion of ergodicity].

5. DISCUSSION
5.1 EVALUATION OF FiT

of diseased quadrats were predicted to have disease. The overall percent of quadrats
misclassified was 16% regardless of whether the soil variables were included in the au-
tologistic model or not (compare MODEL? and MODEL3). MODEL2 does a better job
of predicting disease for field 2 than for field 1, with an overall misclassification rate
of 9%. Examination of the map of misclassified quadrats (Fig. 4) shows that prediction
of disease was generally accurate in the southeast corner with high soil moisture and
concentration of diseased quadrats, but elsewhere in field 2 the model almost always

the soil conditions, or that a higher order neighbor system is needed,. For example, we
may wonder whether neighbors two Quadrats away (third-order neighbors) should be in-
corporated into the model. In field 2 there were 23 misclassified qQuadrats after fitting the
autologistic model with covariates (MODEL?2). The third-order model with covariates
did not have any better predictive ability; it misclassified 25 of the 253 quadrats. In ad-
dition, AIC values using pseudolikelihoods from PROC LOGISTIC were computed for
models from no spatial dependence terms up to third-order dependence structures with
and without the soil covariates. Minimizing the Aikajke information criteria (AIC),

AIC = -2 ¢n likelihood -+ 2p,

where p is the number of parameters, takes the number of parameters and the number of
observations into account while maximizing the likelihood (or in our case, pseudolikeli-

MODEL?2 for field 2.
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5.2 CROSSVALIDATION

The misclassification rates and maps of misclassified quadrats presented thus far
have been based on the model fitted to the entire set of data. Crossvalidation provides
another tool for evaluating the predictive ability of a model, for examining the stability
of parameter estimates, and for checking for influential quadrats. For crossvalidation, we
refit the autologistic model 256 times, omitting one quadrat along with its neighbors each
time, and then predicted disease presence or absence for the omitted quadrat. When fitting
MODEL? for crossvalidation of the ijth quadrat, for example, quadrats j — 1 to j + 1
& intows i — 1 toq+ 1 were omitted, the parameters were estimated, then disease status
for quadrat T;; was predicted. Thus, the dataset used to fit the model for prediction of a
: given quadrat was completely free of the point to be predicted. The numbers of quadrats
~ Misclassified by crossvalidation were very similar to the simple misclassification rates
| Eported in Tables 3 and 4: 16% for field | MODELS3, and 8% for field 2 MODEL2. The
Magnitudes of the regression coefficients varied among the crossvalidation runs when
different quadrats were omitted, but generally reinforced our conclusions. For example,
i field 2 the parameter estimate for soil water content ranged from .20 to .41 for the
A frossvalidation datasets, whereas it was .30 for the complete dataset (Table 4). The
-Pal'ameter estimates for the effect of disease within a row or across rows were both
Y generally small. either negative or positive, but the estimates for the diagonal terms were
 fOnsistently positive—in the (1,1) direction they ranged from .61 to 1.83 and in the
_'(“1,1) direction they ranged from .48 to 1.11.

ws
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Field 2 6/25/92
0 O00CaADO
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Figure 4. Misclassified Quadrants After Fitting MODEL?. Disease status (actual and predicted, respectively);
O = Healthy, Healthy; @ = Healthy, Diseased; & = Diseased, Heaithy; /A = Diseased, Diseased.

5.3 SpATIALLY CORRELATED COVARIATES AND COLLINEARITY

In MODEL2 for field 2. the estimated relationships between the soil variables and
disease are weaker than one might expect, whereas the coefficient for the spatial de-
pendence in the diagonal (1, 1) direction is large (Table 4). When interpreting these
results, it is important to keep in mind that the parameters represent the effects of the
soil variables given the disease state of the neighboring quadrats. The impact of soil
moisture after accounting for the effect of diseased neighbors may be very different from
the unconditional effect of soil moisture. This type of distinction between interpretation
of parameters in models that incorporate spatial (or other) correlation by conditioning
on the neighboring responses and models that incorporate a covarjance structure directly
was discussed in another context by Diggle et al. (1994).

If spatial correlations are ignored in fitting the logistic regression model (MODEL1),
the effects of water content and the leaf disk assays appear stronger than if spatial
dependence is incorporated as in MODEL2. MODEL1 is clearly not adequate because
spatial correlations remain after regressing disease incidence on soil water content and
the leaf disk assay alone (Fig. 3). When terms for disease in neighboring quadrats are
omitted from the model (MODELD1), the effects of soil water content and leaf disk assays
are larger (Table 4). This type of effect in parameter estimates may be expected when the
response depends on disease in neighboring quadrats and the covariates are also spatially
correlated. In this field there is high correlation between soil water content levels in
neighboring diagonal quadrats (Fig. 5). To demonstrate the effect of omitting spatial
dependence parameters, MODEL 1, 2, and 3 were fitted to the 500 lattices generated for
computation of the standard errors, The average differences between the pseudolikelihood
estimate and the true (generated) parameter values are given in Table 7. The parameter
for soil water content is overestimated if the spatial dependence parameters are left out
(MODEL1), and the spatial dependence parameters are overestimated if the soil covariates
are left out (MODELD3).
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Correlogram of Soil Water Content
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Figure 5. Field 2: Spatial Variability of Soil Water Content.

Collinearity among regressor variables also causes difficulty in estimation and inter-
pretation of the coefficients in logistic regression models, resulting in parameter estimates
with large standard errors. In autologistic regression there is the potential for the disease
in neighbors in different directions to be highly correlated with each other. This effect can
be seen in the results for field 2. Using the measure of association %, which estimates the
difference between the probabilities of concordance and discordance (Agresti 1990), the
number of diseased neighbors one quadrat away within the row, Wi, = (yi j—1 + i j+1),
is highly associated with the number of diseased neighbors in every other direction—
across rows 4 = .82, within the row two quadrats away § = .84, diagonal (1,1) direction
4 = .73, and diagonal (—1,1) direction 4 = .74. Gamma is analogous to a correlation co-
efficient, measuring whether two variables such as A;; and W; tend to increase together.
Two quadrats are termed concordant if 4;; and W;; are both greater in one quadrat than
in the other; they are discordant if the relationship of the two quadrats is different for A;;
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Table 7. Average Difference Between PL Estimates and True Parameter Values in 500 Simulated
Lattices Based on Field 2 Data, MODEL2

Soil Leaf Within- Across-
water disk row row Diagonal  Diagonal
Parameter Intercept  content assay  disease disease (1,1) (—1,1)
True value —6.1544 .2948 .3872 .2924 .2261 1.1952 .8366
MODELT bias -4.45 .594 .040
MODEL2 bias - .704 .064 .022 —-.010 —.0044 .029 —.019
MODELS bias 2.7 .190 .182 .240 .236
than for W;;. Gamma ranges from —1 to 1, taking on the value 1 if the probability of

discordance is 0. The standard errors for the spatial dependence parameters were lower
for field 1 than for field 2. Correspondingly, the association values between W, and
the numbers of diseased neighbors in other directions are also lower for field 1 than for
field 2—across rows 4 = .59, two quadrats away within the row 4 = .71, diagonal (1,1)
4 = .44, and diagonal (—1,1) % = 41.

6. SUMMARY

Models for binary response variables are not as familiar as models for continuous
response variables, and statistical theory and software for them tend not to be as well
developed as for models for continuous response variables. Methods of estimation for
logistic regression models are rapidly becoming more available, and commercial software
should be appearing within the next several years. The aim of this article has been to
demonstrate the use and interpretation of one such model for spatial binary data, the
autologistic. A second aim has been to explore issues that arise in assessing the fit of the
model and its usefulness for studying the pattern of disease in an agricultural field.

In this article, parameters of the autologistic model were estimated using pseudolike-
lihood estimation with parametric bootstrap standard errors. This is a simple method that
provides consistent estimators with good precision, provided that the spatial dependence
is moderate. The advantage of this method is that it is easily implemented using exist-
ing software. Standard errors were obtained by generating lattices from the fitted model
using Gibbs sampling, then computing the empirical standard deviations of parameter
estimates from the generated lattices. More precise parameter estimates, as well as test
statistics, can be obtained using Monte Carlo maximum likelihood estimation (Geyer
1991; Graham 1995).

Autologistic models lend themselves naturally to studies of disease epidemics. In our
study of Phytophthora epidemics, we used one example of a field in which soil moisture
is fairly homogeneous across the field and the disease appears to be correlated down rows.
This is what the researchers would expect to see if the disease were carried by water
moving down rows or by root-to-root contact within the rows. Fitting the autologistic
model permits us to estimate that the odds of disease is four times higher if a neighboring
quadrat is diseased than if neither neighbor is diseased. In the other field there was a
strong moisture gradient in the field, and this was highly associated with disease presence.
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In this case, fitting the autologistic model gave estimates of the increased odds of disease
with increased soil water content. In this field, the spatial dependence parameters appeared
less important than the effect of soil moisture after accounting for the effect of moisture.
The effect of spatial dependence in different directions was harder to sort out in this field
than in the first.

In the fitting and interpretation of autologistic models, if the spatial correlation
is too high in any direction it becomes difficult to distinguish among the directions.
In such cases it may be more feasible to fit some other kind of model for spatially
correlated binary data, such as the marginal logistic regression model with spatially
correlated errors described by Albert and McShane (1995). We have found the following
plots and tables useful for studying whether the fitted model adequately captures the
spatial correlation structure: (1) correlograms of the Pearson residuals: (2) measures of
association such as 4 for detecting collinearity in the regressor variables; and (3) maps
of the misclassified quadrats. Crossvalidation is another useful tool, and the quadrats
misclassified in crossvalidation can be mapped and crosstabulated in the same ways as
the simple misclassification errors.

APPENDIX
Field 1 Field 2
7/2/92 6/29/92 6/22/92  6/19/92

7/6/92 soil leaf 6/25/92 soil leaf

disease water disk disease water disk
Row Quadrat status content assay status content assay
1 1 0 15.05 5 1 12.05 4
1 2 0 14.32 2 1 12.07 1
1 3 0 13.99 3 1 13.87 0
1 4 0 13.85 0 1 14.14 1
1 5 0 13.16 5 1 15,07 0
1 6 0 11.81 5 1 13.87 2
1 7 0 11.47 4 0 14.23 0
1 8 0 11.19 5 1 14.31 0
1 9 0 11.94 5 0 13.75 0
1 10 0 11.20 5 0 13.77 0
1 11 0 10.73 5 0 12.62 0
1 12 [ 11.25 5 0 12.50 0
1 13 0 11.64 5 0 11.87 0
1 14 0 13.84 5 0 10.12 0
1 15 0 11.04 5 0 10.16 1
1 16 0 10.73 1 0 8.86 1
1 17 0 10.59 5 0 8.38 0
2} 18 0 9.69 5 0 8.38 1
1 19 0 10.32 5 0 7.48 0
1 20 0 10.33 3 0 7.72 0
2 1 0 16.60 2 i} 11.25 0
2 2 0 15.58 2 1 1302 5
2 3 0 15.99 3 1 13.39 5
2 4 0 14.56 1 1 13,57 0
2 5 0 12.74 0 1 13.87 s
2 6 0 11.70 3 1 13.40 g
2 7 0 11.29 1 0 14.75 4
2 8 0 10.82 4 o 13.32 4
2 9 0 10.26 2 1 2328 0
2 10 0 11.16 1 0 1340 0
2 11 0 3.64 1 o 135t 2
2 12 0 10.15 3 a 11.13 o
5 13 0 10.30 0 0 10.65 0
2 14 0 10.08 3 ¢} 9.15 0
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6 Q 9.09 0 0 1877 2
6 8 Q 9.48 0 1] 10.04 0
6 9 1 8.96 0 0 9.68 3
6 10 1 9.05 0 0 9.60 0
[ 11 1 9.53 5 [4] 9.15 0
6 12 1 B8.38 0 0 9.08 o]
[ 13 0 8.58 0 0 8.60 aQ
& 14 4] 8.80 0 0 8.92 1
6 15 0 8.55 1 0 B.14 0
& 16 0 8.44 ) 0 7.39 4
6 17 0 8.01 0 0 T7.54 (o}
[ 1 1 8.75 0 0 7.56 5
[ 19 1] 8.72 0 0 7..72 0
6 20 1 8.18 (4] 4] 7.20 0
7 1 1 2 ] 12.57 0
7 2 0 14.7 a 1 IL.95 1
s 3 0 12.40 0 aQ 12.35 2
7 4 1 12.57 0 0 11-29 0
7 5 0 11.42 0 0 10.89 0
i [ [} 1158 0 0 11.43 0
7 7 1 11.02 7] 0 9.41 0
7 8 (4] 10.69 0 0 10.39% 1
7 9 0 10.61 2 0 9::55 [4]
7 10 1 10.68 4 Q 9.47 0
7 11 1 10.25 0 0 9.59 Q
7 12 2} 11.03 5 Y] 10.48 ]
7 13 1 10.30 4] Q 8.26 0
7 14 1 10.15 0 0 9.01 1
7 15 0 10.21 0 0 8.48 0
7 16 0 9.36 ] 0 7.10 0
7 17 0 9.38 0 0 T8 0
7 18 0 8.81 0 0 T7.89 0
7 19 4] 9.64 0 [i] 7.82 0
7 20 ] 9.86 0 (1] T.62 1
8 1 Q 11.68 5 a 11.52 1
8 2 0 12.89 4 ] 12.14 Q
8 3 0 12.63 5 0 16.95 1]
8 4 0 12,25 4 0 11.46 1
8 5 0 11.66 0 0 e R o 0
8 [ x i 11.19 0 0 10.74 0
8 7 1 10.35 0 0 10.98 0
8 8 1 9.59 0 0 9.98 0
8 9 0 8.91 3; 0 10.186 0
8 10 1] 9.67 3 0 9.96 3
8 11 1 9.34 0 0 8.71 1]
8 12 1 9.81 0 ] 8.99 0
8 13 0 9.46 0 0 9.80 0
8 14 0 8.65 ‘o 0 8.90 1
8 15 o 9.77 0 0 9.68 0
8 16 0 9.11 0 0 8.40 0
8 17 0 8.87 0 0 8.32 3
8 18 1 9.40 0 0 8.08 0
8 1 ] 8.71 0 0 . 0
8 20 4] 8.32 0 0 7.62 5
9 1 1 12.44 0 1] 11.87 0
9 2 1 14.07 0 0 . il
9 3 1 13.51 Q 1 10.75 2
9 4 1 14.12 3 a 9.49 1
9 5 1 12.50 0 0 10.04 4
9 [ 0 12.01 3 0 9.96 0
9 7 0 10.79 0 0 10.46 1
9 8 0 19.29 0 0 9.42 1
9 9 [1] 10.50 0 Q 8.94 0
9 10 1] 9.82 0 0 8.58 0
9 11 1] 5.58 0 (] 8.53 0
9 12 1] 9.33 o] (1] 3 0
9 13 1] 9.24 0 ] g 5 1]
9 14 [} 9.79 1] Q . 1
9 15 0 9.17 0 1] 7.36 2
9 16 0 9.17 0 ] 7493 Q
9 17 0 9.41 0 o 6.83 0
9 18 0 9.07 0 0 7.69 1
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19 1 9.34 0 0 7.08 0
20 0 8.89 0 0 7.52 2
1 1 13.42 4 0 10.12 0
2 1 13.41 1 0 10.15 2
3 0 12.67 3 0 9.74 1
4 1 14.15 3 1 9.81 1
5 0 13.53 0 0 10.32 0
& 0 . 2 0 10.08 0
7 0 12.13 4 0 10.89 0
8 o 12.34 0 0 9.94 2
9 1 10.84 3 Q 9.68 0
i0 0 11.43 0 0 9.46 0
11 1 10.51 0 1 9.65 4
12 0 10.73 0 0 $.67 1
13 0 10.92 0 0 8.35 0
14 0 10.29 0 0 8.48 0
15 0 9.90 0 0 B.41 1
16 0 10.00 o] 0 8.43 5
17 0 8.93 [¢} 0 8.51 0
18 0 9.69 0 0 7.74 0
19 1 10.38 0 0 8.41 0
20 0 9.64 0 0 8.00 2
1 0 12.57 0 0 8.68 5
2 0 12.18 0 0 8.67 1
3 4} 12.19 0 0 7.60 3
4 0 12.24 0 1 9.60 0
5 [¢] 11.31 0 0 B8.17 3
6 0 17.64 0 0 7.97 4
7 1 12.25 [¢] 1 12.57 0
8 0 11.26 0 0 7.62 ¥
9 0 10.23 0 0 7.03 0
10 0 10.21 0 0 7.08 0
11 0 9.69 0 0 7.20 0
12 0 10.12 0 0 6.1% 0
13 0 9.57 0 0 7.69 1
14 0 9.74 0 0 6.51 1
15 0 10.35 0 0 6.08 4
16 0 8.:97 0 0 5.54 1
17 0 9.43 1} 0 5.87 3
18 0 9.3% 0 0 6.64 4
19 0 9.55 o] 0 6.99 1
20 ] 9.53 0 0 7.45 1
1 0 10.85 0 1 9.22 0
2 0 i B 0 0 7.86 <3
3 0 12.00 0 1 8.40 5
4 o 11.97 5 0 8.10 1
5 0 1z.03 0 0 8.45 1]
6 0 10.82 0 1 8.45 1
7 0 10.91 3 Q 8.61 0
8 0 10.57 0 1 9.28 0
9 0 10.18 4 0 7.88 0
10 1 10.51 0 0 7.98 3
11 0 10.36 1 0 7.41 0
12 0 10.67 1 Q 6.99 0
13 0 10.25 2 0 7.01 ik
14 0 10.18 0 1 6.73 1
15 0 8.90 0 0 6.56 5
16 0 9.30 0 0 6.46 o
17 0 10.04 0 1 6.48 0
18 ] 9.63 0 1 6.95 5
19 0 10.27 o] 0 6.64 3
20 0 9.36 0 0 6.21 5
1 1 s 0 0 8.93 1
2 1 11.07 0 0 8.87 1
3 0 10.85 1 0 7.86 1
4 1 10.85 0 0 7.76 1
5 0 1123 0 0 7.53 5
6 0 10.62 0 1 8.40 0
7 0 10.94 0 1 8.47 3
8 0 10.61 0 0 8. 11 2
9 0 9.42 0 1 8.68 2
10 0 9.9¢6 0 0 8.27 1
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13 11 2.39 0 7.58 2
13 12 0 2.98 0 0 6.83 2
13 13 0 8.71 0 0 02 1
13 14 0 8.87 0 0 51
13 15 9.87 0 0 7.16 2
13 16 0 9,57 0 0 6.59 2
13 17 0 9 2 0 7.12 5
13 18 0 8.¢ 0 0 5.94 0
13 19 0 8. 0 0 56 4
13 20 0 8. 0 0 .10 0
14 1 1 10.37 2 0 71 5
14 2 0 10.48 4 0 7.40 1
14 3 1 10.48 0 1 8.37 1
14 4 0 10.05 0 0 .44 1
14 5 0 9,76 0 0 8.24 4
14 6 0 10.79 0 0 7.47 0
14 ¥ 0 10.05 0 0 7.92 0
1 8 0 9.74 0 0 8.05 0
14 ] 0 9.25 0 0 7.52 0
14 10 0 5.10 1 0 7.64 1
14 11 1 9.00 0 0 * 4
14 12 0 9.32 0 0 7. 1
14 13 1 3,01 0 0 6. 0
14 14 0 8.59 0 0 6. 2
14 15 0 8.97 0 0 5.6 0
14 16 0 8.86 0 0 5. 3
14 17 0 9.11 0 0 i 1
14 18 0 9.20 0 0 6. 0
i 14 19 0 0 0 6.3 3
! 14 20 0 0 0 6. 5
| 1 1 0 10.80 2 0 7.92 5
! 15 2 0 11.49 0 0 9,01 2
i 15 3 0 10.86 0 0 8.97 0
} 15 4 0 10.75 0 0 8.26 3
{ 15 5 0 10.31 0 0 7.65 1
1 15 6 0 3.58 0 0 7.25 3
15 7 0 10.28 0 0 7.27 1
! 15 8 0 10.18 0 0 8.00 0
i 15 9 0 9.68 1 0 733 0
1 15 10 0 9.85 0 0 6.85 0
15 11 0 10.565 0 0 7.24 1
i 15 12 1 10.06 3 0 7.09 0
| 15 13 0 9.80 0 0 6.43 5
| 15 14 0 9.66 0 0 6.85 0
{ 15 15 1 9,37 0 0 5.82 0
i 15 16 0 9.48 0 0 5.33 0
15 17 0 8.87 0 0 6.04 0
| 15 18 0 10.29 0 0 5.79 0
| 1s 19 0 10.53 0 0 5.53 0
! 15 20 0 10.88 0 0 5.58 1
{ 16 1 0 9.81 0 1 9.34 1
! 16 Z 0 11.01 0 0 3.21 3
} 16 3 0 9.84 0 1 9.88 0
i 1 4 0 10.53 1 0 8.33 4
| 16 5 0 10.02 0 0 8.30 0
| 16 6 0 9.52 0 0 2.00 0
16 7 0 16.79 0 0 10.51 0
| 16 8 0 10.30 0 0 8.08 1 i
! 16 9 0 10.79 0 0 7.90 )
16 10 0 10.54 0 0 7.47 0
16 11 0 10.49 0 0 7.87 1
16 12 0 9.72 0 0 771 1
16 13 0 11.16 0 0 7.07 1
16 14 0 9.17 0 0 7.20 2
16 15 0 9.67 0 0 5.63 3
16 16 0 10.06 0 0 6.94 0
16 17 0 8.79 0 0 6.58 0
1 18 0 9.00 0 0 5.33 2
1 1 0 9.38 0 0 6.38 0
16 20 0 9.15 0 0 6.55 1
17 1 0 9.75 0 0 8.38 0
17 2 0 10.03 0 0 8.14 0
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20 15 0 10.55 0 0 5.64 0
20 16 0 11.45 0 0 6.64 2
20 7 0 10.43 0 0 6.56 0
20 18 0 9.45 0 0 5.65 0
20 19 0 10.24 0 0 5.94 0
20 20 0 9,17 0 0 5.59 1
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