1	First Report of Gummosis Caused by Phytophthora frigida on Black Wattle in
2	Brazil
3	
4	T. C. A. Alves, D. J. Tessmann, Universidade Estadual de Maringá, Maringá 87020-
5	090, Paraná, Brazil; K. L. Ivors, Department of Horticulture and Crop Science, Cal
6	Poly, San Luis Obispo, California 93407, USA; J. B. Ristaino, North Carolina State
7	University, Department of Plant Pathology, Raleigh, North Carolina 27695, USA; A. F.
8	Santos, Empresa Brasileira de Pesquisa Agropecuária - Embrapa Forestry, Laboratory
9	of Forest Pathology, Colombo 83411-000, Paraná, Brazil
10	
11	Black wattle (Acacia mearnsii), a tree species native to Australia, is considered the main
12	source of bark for the tannin industry worldwide. It is the third most cultivated forest
13	species in Brazil. Gummosis, caused by Phytophthora spp., is a major disease affecting
14	black wattle plantations in Brazil, where the disease incidence can reach up to 43%. The
15	most common disease symptoms are dark brown, irregular, necrotic lesions on the
16	trunk, which may or may not be accompanied by gum exudation. Severe infection can
17	lead to plant death. Phytophthora nicotianiae and P. bohemeriae were reported as
18	causative agents of black wattle gummosis in Brazil (Santos et al. 2006). In South
19	Africa, besides these species, P. meadii was also recorded on black wattle (Roux and
20	Wingfield 1997) and <i>P. frigida</i> on green wattle (A. decurrens) (Maseko et al. 2007). A
21	survey in six-year-old black wattle plantations located in the Piratini and Cristal
22	counties in the state of Rio Grande do Sul in 2008 revealed the occurrence of a third
23	Phytophthora species causing gummosis on black wattle in Brazil, P. frigida. Isolates

24

based on morphological characteristics, and the sequence of portions of the internal 25

1

were obtained from bark tissue of 24 diseased trees, and all were identified as P. frigida

26	transcribed sequences (ITS) of ribosomal DNA, and the cytochrome oxidase subunits I
27	(coxI) and II (coxII) genes. Morphological characterization of colonies on carrot-agar
28	medium (CA) revealed persistent sporangia with prominent papilla, formed individually
29	or in loose sympodium. The dimensions of sporangia ranged from 29 to 71 $\mu m \times 20$ to
30	53 μm (avg. 46 \times 33 μm), with length-to-breadth ratios of 1.3 to 1.5 (avg. 1.4). The
31	sporangial shape was predominantly ovoid. The colony growth rate was 12 mm/d at 24
32	to 30°C. The isolates produced globose chlamydospores, terminal or intercalary, and
33	measured 21 to 55 μm diameter (avg. 32 μm). All isolates tested were heterothallic and
34	produced oospores globose, aplerotic, 18 to 31 μm (avg. 24 $\mu m)$ in diameter, with
35	amphigenous antheridium. Oogonium diameter was from 22 to 37 μm (avg. 30 μm).
36	Portions of the ITS (815 bp) and the coxI (654 bp) and coxII (945 bp) were amplified by
37	PCR. BLAST search of the GenBank database revealed that the fragments for ITS
38	(KU570067), and coxI (KU570065), and coxII (KU570066) sequence fragments from
39	isolate P92 were 99-100% similar with the accessions of <i>P. frigida</i> HQ261569 and
40	HQ261316 (Robideau et al. 2011). To confirm pathogenicity, the 24 isolates of <i>P</i> .
41	frigida were used to inoculate 10 one-year old black wattle plants. For inoculation, a
42	mycelial plug from a one-week-old isolate grown on CA was placed on a stem wound
43	made with a cork borer (6 mm diam.) and sealed with a strip of parafilm. Plants were
44	kept under greenhouse conditions at temperatures ranging from 22 to 32 °C. Four weeks
45	after inoculation, the stems of the control plants, inoculated with sterile CA plugs, only
46	showed small dark brown spots at the inoculation points. The P. frigida inoculated
47	stems exhibited necrotic lesions up to 4 cm in lenght, with presence or absence of gum.
48	Phythophtora frigida was re-isolated from each infected stem. Worldwide, this is the
49	first report of P. frigida occurring in A. mearnsii.

50 *References*:

2

Page 3 of 3

- 51 Maseko, B., et al. 2007. Mycol. Res. 111: 1321.
- 52 Robideau, G. P., et al. 2011. Mol. Ecol. Resour. 11: 1002.
- 53 Roux, J., and Wingfield, M. 1997. Forest. Ecol. Manag. 99: 327.
- 54 Santos, A. F., et al. 2006. Plant Pathol. 55: 813.