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Plant diseases cause severe threats to global food security by 
devastating crop production in every region of the world. 
Statistically, around 20–40% of all crops losses globally are 

due to pre- or post-harvest plant diseases1; in the United States, 
estimated annual crop losses due to non-indigenous arthropod 
species and plant pathogen introductions are US$14.1 billion and 
US$21.5 billion, respectively2. Late blight caused by oomycete  
P. infestans (Mont.) de Bary3,4 is one of the most ‘armed and danger-
ous’ plant diseases5 with serious implications for the production of  
economically important crops such as potato and tomato. Late 
blight alone accounts for global financial losses of nearly US$5  
billion dollars6. Late blight is identified by blackish brown lesions on 
the surface of plant tissues that result in sporulation of P. infestans, 
spread of sporangia to other plants and death of infected plants in a 
few days if the plants are left untreated. Furthermore, the pathogen  
spreads rapidly under favourable weather conditions. In the 2009 
late blight pandemic in the eastern United States, it only took  
about 2 weeks for the pathogen to spread from infected transplants 
to over 50% of the counties in New York7. Therefore, developing a 
rapid and effective method for early diagnosis of P. infestans and 
many other plant pathogens is critical to the prevention of spread  
of pathogens and subsequent crop diseases and reduction of  
economic losses in agriculture.

Currently, plant pathogen detection is heavily focused on a 
wide variety of molecular assays, including nucleic acid-based 
technologies such as PCR8,9, loop-mediated isothermal amplifica-
tion10,11 or DNA microarrays12; and immunological approaches such 
as antibody-based lateral flow assays (LFA)13 and enzyme-linked 
immunosorbent assays (ELISA)14,15. Nucleic acid-based methods 
are sensitive and specific but dependent on cumbersome assay  
protocols. Immunoassay technology offers simplicity and portability  
for on-site detection but is limited by detection sensitivity and 
specificity for certain applications. Alternatively, field-portable  
sensors have seen rapid development in the past few years and  

hold great promise. For example, a few lab-on-a-chip PCR devices  
for detection of plant pathogens have recently been demon-
strated16–18. However, few miniature systems are capable of high  
analytical performance while at the same time maintaining simplic-
ity and cost-effectiveness.

We report a smartphone-integrated plant VOC profiling plat-
form using a paper-based colourimetric sensor array that incor-
porates functionalized gold nanomaterials and chemo-responsive 
organic dyes for accurate and early detection of late blight in tomato 
leaves. In our sensor array, cysteine (Cys)-functionalized gold 
nanoparticles (Au NPs) or nanorods (Au NRs) were used as plas-
monic aggregative colourants for specific recognition of gaseous  
(E)-2-hexenal, one of the main VOC markers emitted during  
P. infestans infection19. Using this handheld device, we demon-
strated the identification of ten common plant volatiles includ-
ing green leaf volatiles and phytohormones (for example, methyl  
jasmonate and methyl salicylate) within 1 min of reaction. The  
multiplexed sensor array was scanned in real time by a three-dimen-
sional (3D)-printed smartphone reader and calibrated with known 
concentrations of plant volatiles to provide quantitative information 
on volatile mixtures released by healthy and diseased plants. Using 
an unsupervised pattern-recognition method, this smartphone-
based VOC-sensing platform allows for the sub-ppm detection of 
(E)-2-hexenal and low-ppm discrimination of a range of disease-
related plant VOCs. Finally, the performance of the smartphone 
device was blind-tested using both laboratory-inoculated tomato 
leaves and field-collected infected leaves for detection of P. infestans 
and validated against PCR results.

Results
Development of a smartphone-based VOC-sensing platform. 
We developed a handheld optical scanning platform that inte-
grates a disposable VOC-sensor array with the smartphone camera 
module for digital quantification of relevant plant volatiles (Fig. 1, 
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Supplementary Fig. 1 and Methods). The disposable VOC-sensor 
strips were prepared by deposition of an array of chemical sensors 
onto nitrocellulose paper substrates. The paper device was placed 
in the centre of the 3D-printed cartridge and sealed with a micro-
scope cover glass and a rubber O-ring by compression of a sealing 
cover onto the cartridge to create a leak-free space for gas expo-
sure (Fig. 1b and Supplementary Fig. 1d,e). The COMSOL simula-
tion of the gas flow in the sensor cartridge showed the superiority  
of the streamlined gas channel design (Fig. 1c and Supplementary 
Fig. 2a) over other geometries, such as a square-shaped flow  
chamber design that produced much less uniformity of the flow 
rate along the gas flow path (Supplementary Fig. 2b). The sensor  
cartridge was inserted into the smartphone attachment and imaged 
by the camera of the smartphone (Fig. 1a).

Nanoplasmonic materials as plant volatile sensors. The ligand-
functionalized plasmonic NPs could be used as alternative colou-
rants to organic dyes to detect gaseous analytes of interest. Metallic 
nanomaterials have been widely used in biological sensing and 
imaging20–22. One common sensing mechanism is dependent on 
changes in localized surface plasmon resonance (LSPR) through 
the introduction of nanoparticle agglomeration by the binding  
of target molecules to bio-specific receptors on the nanomateri-
als. While various aggregation-based colourimetric assays have 
been developed in solution, few attempts have been made to trace  
small gaseous molecules associated with plant pathogens using  

plasmonic nanomaterials in a dehydrated state. To detect gaseous  
(E)-2-hexenal, one of the main C6 green leaf volatiles and a 
reported VOC marker for late blight19, we synthesized a series 
of cysteine (Cys)-capped Au NPs or NRs as LSPR gas sensors 
(Supplementary Fig. 3). Surface functionalization of nanomateri-
als was done by the ligand exchange of cetyltrimethylammonium 
bromide (CTAB) with Cys (Fig. 2a). UV-visible spectra of Au NRs 
exhibited no notable shifts in plasmon resonance peaks after Cys 
conjugation (Supplementary Fig. 4a). Fourier-transform infrared 
spectroscopy (FTIR) results clearly indicated the ligation of Cys to 
the surface of Au NRs by the detection of characteristic carboxyl 
(O–C=O) stretching absorption at 1,735 cm−1 in Cys-capped Au 
NR inks (Supplementary Fig. 4b). The specific chemical reaction 
between Cys and (E)-2-hexenal was inspired by previous work 
using α,β-unsaturated carbonyl moiety-conjugated probes for sen-
sitive detection of Cys or homocysteine23,24. These functionalized 
nanomaterials are highly responsive to aliphatic α,β-unsaturated 
aldehydes through the 1,4-Michael addition reaction, which cleaves  
the protective Cys ligands off the surface of Au NRs and leads to 
their aggregation through the formation of a seven-membered ring 
imine adduct, (3R, S)-7-propyl-2,3,6,7-tetrahydro-1,4-thiazepine-
3-carboxylic acid (Fig. 2b). The reaction mechanism and byprod-
ucts (cleaved molecules) of this reaction were validated by both  
nuclear magnetic resonance (NMR) and mass spectrometry (MS) 
analyses (Supplementary Figs. 5 and 6). UV-visible spectra and 
transmission electron microscopy (TEM) results clearly indicate 
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the considerable particle aggregation of Au NRs upon exposure to 
(E)-2-hexenal at 10 ppm level (Supplementary Fig. 7).

We then evaluated the performance of various paper-based 
Cys–Au NR sensors for effective (E)-2-hexenal detection. Ten Cys–
Au NR suspensions with their longitudinal resonant peaks in the 
range of 530–650 nm were drop-casted on a nitrocellulose paper 
and dried out as a linear array for gas exposure (Fig. 2c). The nano-
plasmonic sensor array was exposed to different concentrations 
of (E)-2-hexenal vapours generated from a gas dilution platform 
(Supplementary Fig. 8). The Cys–Au NR sensors showed quick 
reactivity to ppm levels of (E)-2-hexenal vapours, and the reac-
tion equilibrium can be reached in around 1 min for analytes at 
1 ppm or higher (Supplementary Fig. 9). Figure 2c shows colouri-
metric responses of various Cys–Au NR sensors to different con-
centrations of (E)-2-hexenal after exposure for 1 min. Solid-state Au 
NRs generally turn purple or grey in response to analytes due to 
particle aggregation but the extent of colourimetric responses was 
highly dependent on the aspect ratio of nanorods. Hypsochromic 
Au NRs (shorter absorption wavelength range 530–570 nm) tended 
to be more responsive with more distinguishable colour changes 
than bathochromic Au NRs (longer absorption wavelength range 
580–650 nm; Fig. 2c). Figure 2d represents a differential colour map 

(ΔR, ΔG, ΔB) of the sensor responses which was developed by sub-
tracting the control (pre-exposure) image from each post-exposure 
images to better visualize the colourimetric response. The results 
suggest that our low-cost LSPR-based gas sensors can trace hexenal 
down to the ~1 ppm even with the naked eye.

Quantitatively, we determined the limit of detection (LOD) of 
each Cys–Au NR sensor for detection of (E)-2-hexenal using the 
Euclidean distance (ED), which is the straight-line distance between 
two points in the Red, Green, Blue (RGB) colour space (defined 
as = Δ + Δ + ΔR G BED 2 2 2 ; Fig. 2e). The LOD was determined 
by finding the minimum concentration whose corresponding ED 
value is above the mean of the blank control (that is, pure N2 at 50% 
relative humidity) plus three times its standard deviation (3σ). It 
turns out that Cys–Au NR with the UV-visible absorption at 535 nm 
gives the best LOD of ~0.4 ppm (Fig. 2f and Supplementary Table 1),  
which is two orders of magnitude lower than the vapour concen-
tration of (E)-2-hexenal produced by infected potato tubers as 
determined by gas chromatography–mass spectrometry (GC–MS) 
(>10 ppm; Table 1)25.

To investigate the effect of particle size and shape in the detection 
of gaseous aldehyde, eight spherical Au NP suspensions with absorp-
tion range 520–580 nm (particle size 10–100 nm; Supplementary 
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Fig. 10) and six elongated Au NR inks with longitudinal resonance 
in the range 750–930 nm (aspect ratio 3–6; Supplementary Fig. 11) 
were prepared and functionalized with Cys as previously described. 
Sensor responses to gaseous C6 leafy aldehyde were found to be 
highly dependent on the optical properties of these nanomateri-
als: for spherical Au NPs, the reactivity gradually decreases with 
increases of particle size and the most sensitive response was 
achieved by 530-nm Au NPs (Supplementary Fig. 12). On the con-
trary, the response of near-infrared Au NRs is slightly enhanced 
with the increase of aspect ratio (Supplementary Fig. 13). Overall, 
the LODs of spherical Au NPs and near-infrared Au NRs were  
not as good as those of short-wavelength Au NRs (Supplementary 
Fig. 14 and Supplementary Table 1).

Multiplexed sensor array for pattern identification of plant 
volatiles. We then developed a multiplexed sensor array combin-
ing Cys-functionalized Au nanomaterials and conventional organic 
colourants for the detection and differentiation of a variety of leaf 
volatiles. This ten-element colourimetric sensor array contains five 
representative Au nanomaterials (535-nm and 530-nm Au NPs; 
535-nm, 830-nm and 930-nm Au NRs), along with the other five 
conventional organic dyes including two pH indicators, two sol-
vatochromic probes and a generic aldehyde/ketone-sensitive dye  
(Fig. 3a and Supplementary Table 2). A typical colourimetric sensor  
array requires the use of multiple cross-reactive dyes to probe a  
wide range of chemical properties of a single analyte or an analyte 
‘bouquet’26,27. For this particular application, the chemical interac-
tions used in our sensor array include Lewis and Brønsted acidity/
basicity, molecular polarity, redox property and solvatochromism 
associated with plant vapour emissions. Previous research has 
proved the long shelf-life and good resistance to environmental 
changes of a similar colourimetric sensor array28. In this study, 
we also observed little variation in sensor response in detection  
of positive samples (10 ppm (E)-2-hexenal) against a variety of  
factors, including humidity, gas flow velocity, temperature and  
common interfering agents such as CO2 and H2S (Supplementary 
Fig. 15), which demonstrates the robustness of our sensor array to 
environmental variation.

The sensor array was then tested with ten plant volatiles, includ-
ing three green leaf volatiles ((Z)-3-hexenal, 1-hexenal and (E)-
2-hexenol), two phytohormones (methyl jasmonate and methyl 
salicylate), two characteristic late blight markers ((E)-2-hexenal and 
2-phenylethanol) and three aromatic VOCs (benzaldehyde, 4-eth-
ylguaiacol and 4-ethylphenol) to demonstrate the capability for 
multiplexing. The sensor array was exposed to 10 ppm of each plant 
volatile and repeated in triplicate. Figure 3a depicts representative 
smartphone images of the sensor array before and after exposure to 
(E)-2-hexenal for 1 min. All Cys-functionalized Au nanomaterials  

showed distinct and visible colour changes after (E)-2-hexenal 
exposure. A dose-dependent measurement of (E)-2-hexenal is 
shown in Fig. 3b. More importantly, readily distinguishable patterns  
were observed for all ten plant volatiles tested (Fig. 3c). We 
collec ted response profiles of six representative analytes (Fig. 3b, 
Supplementary Figs. 16 and 17) and calculated their detection  
limits, which are all well below the diagnostically notable vapour 
levels as determined by GC–MS on infected plant tissues (Table 1).

Although the LOD is a widely used figure to describe the detec-
tion sensitivity of a sensor device, it does not indicate the ability 
of a sensor to identity a specific analyte in a mixture. The point 
at which one can discriminate a particular analyte from others is 
defined as the limit of recognition (LOR), which varies depend-
ing on the library of analytes among which a specific target can be  
differentiated. To determine the LOR of our sensor array, we exam-
ined all ten plant volatiles at 10, 5 and 2.5 ppm. A multivariate tech-
nique, principal component analysis (PCA)29,30 was performed to 
give a measurement of the dimensionality of the data library. PCA 
results showed that for the dataset collected at each concentration, 
it generally requires five to six dimensions to account for >95% of 
total variance for accurate classification (Fig. 3e). For the simplicity  
of plotting and visualization, we only use the first three principal 
components that account for >80% of total variance to show the 
overall classification. As shown in Fig. 3d, nine out of ten plant 
volatiles are perfectly clustered and well-separated from the control 
(N2 gas) at 10 ppm. In contrast, the volatiles are moderately discrim-
inable at 5 ppm but indistinguishable at 2.5 ppm (Supplementary 
Fig. 18). We therefore estimate that the LOR of the sensor array  
for differentiating main plant volatiles is between 5 and 2.5 ppm, 
about five to ten times higher than their LODs.

Non-invasive detection of P. infestans. For actual applications,  
we improved the smartphone reader device by incorporating a  
diaphragm micropump for active sampling of unknown gaseous 
analytes in the field (Fig. 4a and Supplementary Fig. 19). To assess 
its efficacy for detection of P. infestans-infected plants, fresh tomato 
leaves were inoculated by spraying 1 ml P. infestans sporangia sus-
pensions (1,000–10,000 sporangia ml−1; Fig. 4b) onto the leaf; their 
VOC profiles were monitored by the smartphone sensor device 
daily for up to 6 d after inoculation. A general workflow of the 
smartphone device for profiling VOC emissions from plant leaves is 
shown in Fig. 4a. Conditions used for pathogen detection were care-
fully optimized, including accumulation time for headspace gases 
(60 min; Fig. 4c) and gas sampling time (1 min; Supplementary  
Fig. 9). The batch-to-batch reproducibility of disposable volatile test 
strips was also tested and consistent readout was confirmed (Fig. 4d).  
The smartphone-based sensor response patterns of P. infestans-
infected tomato leaves are shown in Fig. 4e, where control samples 
(healthy leaves) showed a relatively weak VOC background. Unique 
patterns related to potential pathogen infection emerged 2 d after 
inoculation and the patterns became more visually distinguishable 
on subsequent days (Fig. 4e). Due to the highly mixed nature of  
the plant leafy volatile emissions, more sensor elements were turned 
on by the leaf headspace gas (Fig. 4e) compared to previous single 
VOC species tests (Fig. 3c).

VOC profiles sampled over different times after infection show a 
steady increase of ED values as a function of days after inoculation 
(Fig. 4f). By applying PCA, infected tomato leaves at varying stages 
of infection and healthy leaf controls can be readily discriminated 
by using the first three principal components (Fig. 4g). Leaf samples 
profiled 2–4 d after inoculation are clearly clustered and separated 
from those profiled 1 d after inoculation or healthy leaf controls; 
they become indistinguishable at the later stages of infection (5 or 
6 d after inoculation) because of the saturation of the sensor signals. 
Therefore, we conclude that our smartphone-based VOC-sensor 
device is viable for early detection of P. infestans and responds to 

Table 1 | LODs of six representative plant volatiles detected by 
the chemical sensor array on the smartphone, as compared to 
the vapour levels detected in P. infestans-infected potato tissues 
by GC–MS

Plant VOCs LODs (ppm) Vapour level (ppm)a

(E)-2-Hexenal 0.4 12–18

(Z)-3-hexenal 1.1 6–12

1-hexanal 1.7 3–6

4-ethylphenol 1.8 3–6

Benzaldehyde 0.9 0.3–1.5

2-phenylethanol 5.2 1.5–3
aData recalculated from ref. 25.
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the infection within 2 d after inoculation before visible symptom 
development.

To demonstrate the specificity for P. infestans detection, we 
compared the VOC pattern of P. infestans with those of two other 
pathogens of tomato (fungi Alternaria solani for early blight and 
Septoria lycopersici for Septoria leaf spot). The volatile composition 
of leaves inoculated with the three pathogens and the healthy con-
trol was first characterized by GC–MS analysis, which revealed dis-
tinguishable VOC signatures for the pathogens (Fig. 5a). The sensor 
response profiles of the three pathogens (3 d after inoculation) plus 
a healthy control are shown in Fig. 5b, which shows quantifiable 
differences in the overall sensor responses. A higher level of (E)-2-
hexenal was observed in the cases of P. infestans and A. solani infec-
tion as indicated by sensor spots numbered 1–5 and 10, whereas 
S. lycopersici tended to emit a larger content of 4-ethylphenol and 
4-ethylguaiacol that result in higher responses of spots 6 and 7  
(Fig. 5b). The sensor responses are generally in a good agreement 
with the GC–MS measurements. Moreover, a healthy leaf sample 
spiked with 5 ppm (E)-2-hexenal produced a VOC response pattern 
similar to that of a pathogen-infected sample, while other aldehydes 
(for example, 1-hexenal) did not respond (Fig. 5b). These results 

further confirm that (E)-2-hexenal is a major diagnostic VOC 
marker for P. infestans. Using PCA, we were able to differentiate 
each of three typical tomato pathogens plus a healthy control with 
an overall classification accuracy of 95.4% (that is, only 3 errors out 
of 65 measurements in total; Fig. 5c).

Finally, the performance of the smartphone-based VOC-sensor 
was evaluated by two blind tests for detection of P. infestans in both 
laboratory-inoculated and field-collected leaves, as well as a green-
house pilot test for continuously monitoring of VOCs from the same 
tomato plant before and after inoculation over a period of 1 month. 
For the double-blinded laboratory test, 40 anonymous tomato leaf 
samples were measured on the smartphone VOC-sensing platform 
by personnel who were not involved in sample preparation and PCR 
validation. The sample pool contained both infected and healthy 
leaves to challenge the device. PCR tests were run for each sam-
ple and used as a standard for validation (Supplementary Table 3). 
From the previous tests, we observed that the VOC level of healthy 
tomato leaves averaged around 10.4 ± 1.2 (Fig. 6a, red points). 
Therefore, a diagnostic threshold of 14.0, which is the mean of con-
trols plus three times the standard deviation, was chosen for the 
determination of diseased leaf samples (grey dashed line, Fig. 6a). 
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Using this threshold value, our smartphone VOC-sensor was able to 
rapidly generate binary diagnostic results—positive (+) or negative 
(–)—on the 40 blind samples tested (Supplementary Table 3). Only  
two samples were misdiagnosed by the smartphone VOC-sensor 
(Fig. 6a, red circle in the middle panel), with a detection sensitivity 
(true positive rate) of 100%, specificity (true negative rate) of 90% 
and overall detection accuracy of 95%, when compared to the PCR 
results (Table 2 and Supplementary Table 3).

For the blind field sample test, 40 tomato leaves were collected, 
including 20 PCR-positive (+) leaves with suspicious symptoms 
and 20 symptomless samples representing PCR-negative (–).  
All infected leaves were collected from tomatoes grown at the 
Mountain Research Station in Haywood County, North Carolina 
on 20 August 2018 (ref. 31). In this pilot study, VOC emissions 
from all 40 pieces of leaves collected from the field were analysed 
using the smartphone VOC detector. Results were then compared 

side-by-side to results of quantitative PCR (qPCR) following con-
ventional CTAB-based DNA extraction. Out of 20 samples that 
were identified as positive (+) by qPCR analysis (Supplementary 
Table 4), 19 samples were correctly diagnosed by our smartphone 
VOC-sensor, while all negative samples were correctly diagnosed, 
representing an overall detection sensitivity, specificity and accu-
racy of 95%, 100% and 97.5%, respectively (Table 2 and Fig. 6a,  
blue points). Combining all data together, healthy and infected 
tomato leaf samples (either laboratory-inoculated or field-collected) 
exhibited a clear classification in the PCA plot, on the basis of the 
first two principal components (Fig. 6b). The subtle difference 
between laboratory-prepared and field-collected infected samples 
was also captured by the smartphone VOC-sensor: laboratory-
inoculated samples showed a narrower distribution of leafy VOC 
levels (Fig. 6a, green points) due to better control of the inoculum 
dose and time, whereas field samples exhibited a wider spread of  

a

Infected leaf with
P. Infestans

Smartphone

Gas flow

Sensorholder
Micropumpchamber

test for 1 min 
Accumulate

headspace gas
for 1 h

Leaf in 20 ml
vial Smartphone VOC sensor

e f

Eu
cl

id
ea

n 
di

st
an

ce
 (a

.u
.)

Duration after inoculation (d)
0 1 2 3 4 5 6

0

5

10

15

20

25

30Healthy
control

day 3

day 4

day 5

day 6

Infecte
d-day 1

day 2

–1.5
–1.0

–0.5
0.0

0.5

–1.2
–0.9

–0.6

–0.3

0.0

0.3

1.0

1.5

2.0

2.5
3.0

Ax
is

 3
 (6

.1
%

)

Ax
is 

1

Day 0
and 1

Day 2

Day 3

Axis 2 (22.7%)

Day 4

Day 5
and 6

g

b c d

0 50 100 150 200 250
Gas accumulation time (min)

2,500 spore ml–1 on day 2 10,000 spore ml–1 on day 2 
2,500 spore ml–1 on day 4 10,000 spore ml–1 on day 4 

2,500 spore ml–1 on day 0 10,000 spore ml–1 on day 0 

Day 0

Day 2

Day 4

15 min

Eu
cl

id
ea

n 
di

st
an

ce
 (a

.u
.)

Inoculation concentration (spore ml–1)
1,000 2,500 5,000 10,000

0

10

20

30

Eu
cl

id
ea

n 
di

st
an

ce
 (a

.u
.)

0

10

20

30

Eu
cl

id
ea

n 
di

st
an

ce
 (a

.u
.)

0

10

20

30
Day 2
Day 4
Day 6

2 3 4

10,000 spore ml–1 on day 2
10,000 spore ml–1 on day 4

1
Batch no.

Fig. 4 | Detection of P. infestans in tomato leaves by the smartphone VOC-sensor. a, A general workflow showing the procedure for the analysis of plant 
volatiles using the portable smartphone VOC-sensing device. b, Sensor response of infected leaves on days 2, 4 and 6 when inoculated with four different 
spore concentrations (1,000–10,000 sporangia ml−1). c, Sensor response as a function of gas accumulation time (15, 30, 45, 60 min, 2 h and 4 h) for 
2,500 or 10,000 sporangia ml–1 of inoculates collected on days 0, 2 and 4. d, Reproducibility tests of four separately prepared batches of sensor arrays. 
e, Differential RGB profiles of volatiles released from infected tomato leaves up to 6 d after inoculation with P. infestans. f, Response plot showing the 
Euclidean distance of all ten sensor elements as a function of the duration of pathogen infection. g, PCA score plot of infected tomato leaves for different 
periods of infection. Point colours represent the different days after inoculation. For reproducibility testing, data were presented as means ± s.d., n = 3 
biologically independent samples for experiments shown in b–d; and n = 7 biologically independent samples for experiments shown in e–g.

NATuRe PLANTS | www.nature.com/natureplants

http://www.nature.com/natureplants


ArticlesNature PlaNts

ED values as a result of the heterogeneous nature of field samples 
(Fig. 6a, blue points).

For the greenhouse measurements, VOC profiles of healthy 
leaf controls (three tomato plants) were collected once every other 
day by the smartphone sensor device for 24 d. The plants were 
then inoculated with P. infestans on the 25th day and after that the 
VOCs of infected leaves were monitored daily for another 8 d until 
the plants completely died. The response curve obtained from this 
1-month monitoring experiment showed a stable baseline VOC 
response from healthy tomato plants in the first 24 d and a rapid 
increase of VOC emissions 1–2 d after inoculation (Fig. 6d). These 
results confirm the ability of the smartphone volatile sensor to  
capture pathogen-induced leaf volatile changes immediately as 
infection occurred.

Last but not least, the VOC levels obtained on the smartphone 
gas sensor from infected samples demonstrated an inversely pro-
portional linear correlation (R2 = 0.81) to the cycle numbers (Cq) 
of the P. infestans-specific qPCR assay (Fig. 6d and Supplementary 
Table 4), indicating that higher VOC emission level was associated 
with higher pathogen DNA content in tomato leaf samples and 
therefore lower Cq values.

Discussion
VOC emission by plants has recently emerged as a non-invasive 
diagnostic marker of infectious plant diseases32–34 due to the rich 
chemical information of VOC35–37 and their unique functionality 
in plant self-defence and interplant communications38–42. Although 
several portable detection platforms such as electronic noses 
(e-noses)43–45 have been previously demonstrated for plant volatile 
analysis, most e-nose technologies only use weak chemical inter-
actions and therefore suffer from several limitations, including: (1) 
low sensitivity for sub-ppm detection of compounds, (2) limited 
chemical specificity to discriminate volatiles with similar chemical 
structures and (3) severe interference from environmental variation 
including humidity and temperature.

Alternatively, our smartphone-based VOC-sensing method uses 
chemically specific sensing elements consisting of cross-reactive 

plasmonic nanomaterials and dyes with notably stronger chemi-
cal interactions, and therefore results in unprecedented detection 
sensitivity (Fig. 2f and Table 1), multiplexity (Fig. 3c,d) and chemi-
cal selectivity (Fig. 5). We also demonstrated that our chemical 
sensor array is robust and reproducible (Fig. 4d) in signal readout 
when working under various conditions (Supplementary Fig. 15). 
Certain toxic gaseous molecules, such as H2S, may cause sensor drift  
(for example, ~5% increase in sensor response at 5 ppm H2S), 
which suggests that the use of VOC strips may be limited in certain  
special scenarios, such as near rotting vegetables or fruits. However, 
the environment-induced signal drift of VOC strips (≲5%) is in 
general much smaller than e-nose sensors (up to 30%)45. In addi-
tion, the cost of the chemical sensor array is estimated to be about 
15 cents per test and the smartphone attachment is about US$20 
(excluding the phone), which is orders of magnitude less expensive 
than commercial e-nose sensors.

The main innovation of this work lies in two areas: first, we 
use plasmonic nanostructures as a new class of sensing elements 
to greatly expand the library of targets that can be analysed on a 
conventional chemical sensor array28,46–48; and second, we have 
integrated a portable smartphone reader to facilitate field deploy-
ment and implementation. Although the concept of using LSPR 
for gas sensing has been explored by several other groups49–52, 
most previous studies rely on bulky and expensive spectrometers 
for monitoring wavelength shifts or absorption changes, limiting 
their potential for field applications. Instead, the plasmonic mate-
rials in this study are used as chromogenic aggregative colourants 
embedded in a paper matrix, whose signals—colour changes—can 
be easily detected and quantified by low-cost reader devices such as 
smartphones. A mobile application is in development to conduct 
image analysis also on the same platform. The detection specificity 
of plasmonic gas sensors is achieved by the capturing ligands immo-
bilized on the surface of nanostructures, therefore allowing versatile 
ligand design to extend the applications to a broad range of gas-
eous targets. On the other hand, despite the great progress in smart-
phone-based imaging and sensing technology recently53–59, only a 
few applications for gas detection have been demonstrated60–64 and 
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no smartphone-based systems have been reported yet for specific, 
rapid and non-invasive plant pathogen detection in the field.

The gas sample processing steps in our approach are relatively 
simple. The use of glass vials for collecting leafy headspace gas 

from detached samples provides a stable and reproducible test-
ing environment. Moreover, although a 1-h gas accumulation step 
has been implemented in this initial study, a gas collection time 
as short as 15 min is sufficient to differentiate uninfected samples 
from infected leaves 3–4 d after inoculation (Fig. 4c). Therefore, 
the quickest sample-to-result time could be less than 20 min for 
field testing. Alternative sampling methods are possible to com-
pletely remove the leafy headspace collection step and shorten the 
total assay time. For example, the sensor patches could be attached 
directly to the plant leaves for in planta monitoring, where the sig-
nals could be continuously received by remote monitoring devices. 
The wearable design may be more advantageous than smartphone-
based scanning in terms of long-term monitoring of symptomless 
plants and deployment of larger numbers of sensors over a large 
scale to more efficiently detect early infections in fields. Although 
we observed that undetached leaves produce 10–15% less volatile 
emissions than those from detached leaves (Supplementary Fig. 20),  
such difference may be compensated by a better sensor and gas  
sampling design in future. The current smartphone-based VOC 
pathogen sensors could be integrated into a disease forecasting  
system for late blight. They could be used by field extension work-
ers or farmers to trigger a spray event, whereas current late blight 
forecast systems are mostly weather-based65.
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Table 2 | Quantification of the detection sensitivity, specificity 
and accuracy of the smartphone VOC-sensor in the blind tests, 
on the basis of PCR results used as the gold standard

Blind laboratory 
samples (n = 40)

Blind field samples 
(n = 40)

PCR VOC qPCR VOC

True positive (TP) 20 20 20 19

False positive (FP) – 2 – 0

True negative (TN) 20 18 20 20

False negative (FN) – 0 – 1

Sensitivity (TP/P) – 100% – 95%

Specificity (TN/N) – 90% – 100%

Accuracy ((TP + TN)/n)) – 95% – 97.5%
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In conclusion, we developed a cost-effective, field-deployable 
and integrated VOC-sensing platform installed on a smartphone 
for non-invasive profiling of infectious plant diseases such as late 
blight with a high degree of detection sensitivity and specificity. 
The multiplexed chemical sensor assay used in this system is built 
on plasmonic nanomaterials to target green leafy aldehyde, (E)-2-
hexenal, a major late blight VOC marker down to sub-ppm level 
of LOD. The smartphone reader device itself integrates bright-field 
imaging modality, a micropump for active gas sampling and wire-
less connectivity to be used in the field or resource-limited settings. 
We demonstrated the performance of this portable VOC-sensing 
system for simultaneous detection and classification of ten individ-
ual plant volatiles. By combining this with a pattern classification 
algorithm such as PCA, diagnosis of tomato late blight as early as 2 d 
after inoculation was achieved on the smartphone, which is much 
earlier than the manifestation of visible symptoms. Moreover, this 
smartphone-based VOC-sensing platform can accurately identify 
late blight from infected tomato leaf samples either inoculated in the 
laboratory or collected from the field with a detection accuracy of 
above 95%. The device has been beta-tested in the greenhouse set-
ting for monitoring of infection progression for a period of 1 month. 
Considering the design flexibility, multiplexity and cost-effective-
ness, this integrated optical gas sensor platform can be potentially 
applied to detect other common plant pathogens at very early stages, 
as well as to monitor various abiotic stresses of plants in the field.

Methods
Reagents and materials. All reagents and materials were analytical reagent grade 
and used without further purification. Reagents for Au nanomaterial synthesis 
including HAuCl4, CTAB, AgNO3, cysteine, NaBH4 and common solvents were 
purchased from Sigma–Aldrich; nitrocellulose membrane (0.45 µm, catalogue no. 
MCE4547100G) was purchased from Sterlitech Corporation; Sensor cartridges 
were made by 3D-printing using a thermoplastic, ABSplus-P430 (Eden Prairie).

Preparation of the smartphone VOC reader device. The smartphone attachment 
and sensor cartridge were designed with Autodesk Inventor and prototyped using 
a 3D-printer (uPrint SE Plus, Stratasys). The sensor array is illuminated by the 
default LED flash of the phone (LG V10) and the illumination was uniformed by 
an optical diffuser (6 × 9.5 × 2.3 mm3, parts no. 02054, Edmund Optics) placed in 
front of the LED flash. An external lens (12 mm in diameter) with focal distance of 
48 mm (parts no. 65-576, Edmund Optics) was placed in between the smartphone 
camera and sensor array to collect the colourimetric signals of the array. The lens 
provided a demagnification factor of about six times (30-mm object distance) so 
that the entire sensor array could be captured in the field of view of the smartphone 
reader. The current attachment is designed for an Android smartphone (LG V10), 
and likewise a similar platform can be easily manufactured for other brands of 
smartphones such as an iPhone or tablet, after minor modifications to the footprint 
of the base attachment.

A diaphragm micropump (T5-1IC-03-1EEP, Parker Hannifin) was installed 
at the back of the reader device for pulling VOC analytes from real plant tissues 
onto the sensor array. The micropump was powered by three AA batteries and 
connected to the sensor cartridge via microtubings (parts no. 21564304, Versilon). 
This battery-powered micropump generates a gas flow rate of 480 standard cubic 
centimetre per minute (sccm) to the sensor array.

Synthesis of plasmonic nanomaterials. Short Au NRs. The highly concentrated 
Au NRs were prepared according to the scale-up, two-step seed-growth method66. 
First, the seeds were made by adding 0.364 g of CTAB to 10 ml of 0.25 mM HAuCl4. 
Then 0.6 ml of 0.01 M NaBH4 solution was added dropwise to the above solution 
while it was stirring at 800 r.p.m. The colour of the solution instantly became light 
brown and the seeds were aged for 5 min and used for all experiments. Second, 
a two-step seed-growth synthesis was performed: the first growth solution was 
prepared by mixing HAuCl4 (0.5 ml, 5 mM), AgNO3 (8 μl, 0.1 M), ascorbic acid 
(53 μl, 0.1 M), CTAB (0.364 g) and Milli-Q water (8.5 ml) at room temperature. 
Then 1 ml of the seed solution was added into the growth solution, with a waiting 
period of 5 min before further addition of reagents. During the second growth, 
100× concentration of each precursor was added to the solution obtained from the 
first step, which contained HAuCl4 (5 ml, 50 mM), AgNO3 (80 μl, 1 M), ascorbic 
acid (530 μl, 1 M), CTAB (0.364 g) and Milli-Q water (4.5 ml). The mixture was 
allowed to react for 10 min before centrifugation and collection of the final 
product. The particle concentration was estimated to be ~0.02 mM on the basis of 
the measured optical density and the previously determined extinction coefficients, 
which was about 50 times as high as that obtained by the conventional seed-
mediated method.

Near-infrared Au NRs. The synthesis of NIR Au NRs follows the same protocol 
of short Au NRs except that a co-surfactant, benzyldimethylammonium chloride 
(BDAC), was used along with CTAB in both the first and second steps of seed-
mediated Au NR synthesis66,67. Six concentrations of BDAC (0.025, 0.05, 0.075, 0.1, 
0.125 and 0.15 mM) were applied that yielded six NIR Au NRs with absorption 
wavelengths ranging from 750 to 930 nm.

Spherical Au NPs. Spherical Au NPs with different diameters were synthesized 
by varying the molar ratio of citrate to Au(III) precursor68. Briefly, HAuCl4 
(10 ml, 0.5 mM) was placed in a 50 ml single-neck round flask. The flask was 
then immersed in an oil bath without reflux and heated to 100 °C under vigorous 
stirring at 800 r.p.m. for 10 min. While the Au(III) solution was boiling, different 
volumes (0.25, 0.5, 0.5, 1.25, 2, 4, 7 and 12 ml) of citrate solutions (5 mM) preheated 
at the reaction temperature were quickly added in. The product was allowed to cool 
down to room temperature after the reaction proceeded for another 10 min, then 
centrifuged and washed three times and then dissolved in 0.2 ml nanopure water to 
make it about 50 times as concentrated as the initially obtained Au NP solution.

Oxidation and ligand exchange of nanoplasmonic materials. For particle 
oxidation, different amounts (10–100 µl) of a mild oxidant, HAuCl4 (5 mM), were 
added to the Au NR solution69. The oxidation process occurred 5 min after the 
addition of Au(III), which was monitored by a UV-visible spectrometer to record 
the extinction spectra over time. Once each of the ten desired longitudinal plasmon 
resonance wavelengths (530–650 nm) were achieved, the oxidation process was 
stopped by precipitating Au NRs with centrifugation and redispersing them in 
0.1 M CTAB solution. The aspect ratio (AR) of Au NRs were tuned in between 1 to 
2.5, which produces nanorods with an average width of 20 nm and varied length 
from 20 nm to 50 nm, as evidenced by TEM images (Supplementary Fig. 3).  
For ligand exchange, 1 ml of 0.1 M cysteine was added to 1 ml CTAB-capped Au 
NR solution and the mixture was stirred at room temperature for 24 h. The final 
products were collected with centrifugation and redispersed in 0.1 M cysteine 
before the preparation of sensor arrays.

Characterization of Au nanomaterials. For the studies of surface chemistry 
and nanoparticle morphologies, FTIR spectra were acquired on a Perkin Elmer 
Frontier spectrometer from 4,000 cm−1 to 1,000 cm−1. UV-visible absorption data 
was collected on a Thermo Evolution 201 UV-visible spectrophotometer. TEM  
was performed on a JEOL 2000FX with an acceleration voltage of 200 kV.

For the validation of chemical reaction mechanism during nanoparticle 
aggregation, 1:1 molar mixture of cysteine (3.02 g, 25 mmol) and (E)-2-hexenal 
(2.45 g, 25 mmol) were dissolved in D2O (20 ml) and stirred at room temperature 
for 2 h to simulate the gas-phase sensing reaction. The solids were filtered, washed 
with D2O and dried under vacuum to give the white product (4.22 g; yield 84%). 
NMR solution was prepared by redissolving the purified product (20 mg) in 
D2O (0.75 ml) and DCl (0.05 ml). 1H and 13C NMR spectra of the as-synthesized 
product were recorded on a Varian 600 MHz spectrometer. 1H NMR (600 MHz, 
D2O) chemical shifts (δ): 7.5 (doublet of doublets (dd), 1 H), 4.63 (singlet, 1 H, 
solvent), 4.02 (dd, 1 H), 3.47 (dd, 1 H), 3.24 (dd, 2 H), 2.48 (doublet of doublets 
of doublets, 2 H), 1.52 (dd, 2 H), 1.40 (dd, 2 H), 1.06 (triplet, 3 H); 13C NMR 
(125 MHz, D2O) δ: 173.9, 67.4, 65.7, 47.6, 47.1, 35.8, 32.4, 19.6, 17.2. Mass spectra 
were collected on a Waters Q-TOF Premier Mass Spectrometer. Electrospray 
ionization mass spectrometry (ESI–MS) mass-to-charge (m/z) ratio: calculated 
C9H15O2NS [M + H]+ = 202.0; detected = 201.9. Both NMR and MS results support 
the formation of seven-membered ring imine product, (3R, S)-7-propyl-2,3,6,7-
tetrahydro-1,4-thiazepine-3-carboxylic acid, as the major product during the 
nanoparticle aggregation.

Sensor array preparation. Each of the Au nanomaterial inks was used as is, while 
the other five organic dyes were prepared in the sol–gel formulations (in porous 
silica made from the hydrolysis of tetraethoxysilane and ethyltriethoxysilane, 
as reported previously46). About 150 nl of each Au nanomaterial ink or dye 
formulation was transferred by slotted stainless steel pins (parts no. FP4CB, V&P 
Scientific) and drop-casted onto the nitrocellulose substrate to form a round 
coloured spot with ~1 mm in diameter, using a LEGATO 180 pl syringe pump (KD 
Scientific). Detailed composition and concentration of each sensor element can be 
found in Supplementary Table 2. Before the measurements, colourimetric sensor 
arrays were stored in a nitrogen-filled desiccator for 24 h. The sensor arrays are 
stable for 1 month under storage in N2.

Gas exposure and image capturing experiment. Gas mixtures were prepared 
according to previous methods45. Briefly, MKS mass flow controllers were used 
to achieve gas streams with the desired concentration (for example, 0.1–100 ppm 
of (E)-2-hexenal), flow rate (500 sccm) and 50% relative humidity by mixing the 
proper portion of saturated vapour of the liquid analyte with dry (0% relative 
humidity) and wet (100% relative humidity) nitrogen gas. Arrays were exposed to 
a control stream (50% relative humidity N2) for 1 min followed by 1 min exposure 
of an analyte stream. A photo was taken by the camera of a smartphone, LG V10, 
at the end of 1 min exposure to either the control or the analyte, as the before- or 
after-exposure image.
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Inoculation of tomato leaves and detection of headspace gas. Tomato seedlings 
were purchased from local supermarket and cultivated in a greenhouse at 25 ± 3 °C  
under 16 h of light per day. A typical P. infestans strain (NC 14-1, US-23) was 
cultured on rye medium in the dark at 20 °C. Leaves collected from tomato plants  
at the five-to-six leaf stage were inoculated with suspensions of P. infestans sporangia  
(~10,000 sporangia ml−1) in a sterile acid-washed Petri dish (100 × 15 mm2). 
Healthy tomato leaves treated with sterile water were used as controls and kept 
under the same condition. The infected leaves and the control leaves were quickly 
transferred into borosilicate scintillation vial (20 ml) with screw lids and incubated 
at room temperature with 95% relative humidity. The capped vials were further 
sealed with Parafilm (Bemis) to allow the headspace gases to accumulate for 1 h 
before the measurement. The headspaces above each of the infected leaf samples 
and the controls were sampled by the micropump-equipped smartphone  
VOC-sensing device every 24 h after inoculation over the next several days.

Solid-phase microextraction GC–MS test of plant volatiles. Solid-phase 
microextraction sampling was performed using non-polar divinylbenzene/
carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fibres. The screw thread 
solid-phase microextraction vials were fitted with Teflon septa and loaded with 
a healthy leaf or each of the three inoculated leaves to accumulate the vapour for 
1 h. The fibre then penetrated into the septa to extract the volatiles for 2 min. GC–
MS experiments were carried out using an Agilent Technologies 7890A GC–MS 
equipped with a flame ionization detector and mass selective detector. The injector 
temperature was kept at 80 °C and analytes were desorbed for 2 min. The carrier gas 
was helium (1 ml min–1). For analysis, the initial oven temperature was maintained 
at 80 °C for 2 min, increased at a ramp rate of 5 °C min–1 to 305 °C for 45 min.  
The GC–MS built-in NIST libraries were used to interpret the mass spectra.

qPCR analysis of field leaf samples. For CTAB-based DNA extraction, 
approximately 10 mg homogenized leaf sample was taken in a microcentrifuge 
tube and mixed with 150 µl extraction buffer (0.35 M sorbitol, 0.1 M Tris, 0.005 M 
EDTA, 0.02 M sodium bisulfite, pH 7.5), 150 µl nuclei lysis buffer (0.2 M Tris, 
0.05 M EDTA, 2.0 M NaCl and 2% CTAB, pH 7.5) and 60 µl 5% N-lauryl sarcosine. 
Then, the tube was incubated at 65 °C for 30 min. After incubation, 300 µl 
chloroform was added to the tube and centrifuged at 12,000 r.p.m. The aqueous 
phase containing DNA was transferred to a new tube and mixed with 300 µl cold 
isopropanol (100 %) and 30 µl of 3 M sodium acetate (pH 8). The sample was stored 
overnight at −20 °C and then centrifuged at 13,000 r.p.m. for 5 min to pellet the 
precipitated DNA. After discarding the supernatant, 1 ml cold ethanol (70%) was 
added to wash the pellet. The sample was centrifuged again at 13,000 r.p.m. for 
5 min and the ethanol solution was disposed. Finally, the DNA pellet was air-dried 
in a fume hood and resuspended in 100 µl TE buffer (10 mM Tris-HCl, 0.1 mM 
EDTA, pH 8.0). For qPCR amplification, 1 µl template DNA was used with two P. 
infestans-specific primers PINF (CTCGCTACAATAGGAGGGTC) and HERB1 
(CGGACCGCCTGCGAGTCC), which generate an amplicon length of ~100 base 
pairs (bp) using a previously published thermocyling procedure70.

Greenhouse measurements. Three robust tomato plants grown in the pots 
were placed in a clear plastic bin and cultivated in the greenhouse under room 
temperature, with 12 h illumination per day. A damp paper towel at the bottom 
of the bin was used to keep high relative humidity. The VOC level of each plant 
during the healthy growth phase was monitored and recorded daily over 24 d. At 
the 25th day, 1 ml of sporangia solution (5 × 103 sporangia ml–1) was evenly misted 
onto the leaves of plants and the lid of the bin was completely closed to allow for 
100% relative humidity and to avoid spreading of the pathogen. Symptoms of late 
blight became apparent 3 d after inoculation. The VOC level was continuously 
monitored by the smartphone detector until the 8th day after inoculation, when 
the complete death of the plants occurred.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available in the paper and its 
Supplementary Information. All data generated or analysed are available from the 
corresponding authors on reasonable request.
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Data collection All mobile phone images of the sensor array were collected by the basic camera functioning module of an Android smartphone, LG V10 
(LG Corp.).

Data analysis Adobe Photoshop CS5 (Adobe Photoshop version 12.0, by Adobe Inc.) was used for the measurement of RGB color changes of each 
sensor element, and fungal DNA analysis using qPCR was conducted by GENEX program version 1.0 (Bio-Rad, by Bio-Rad Laboratories). All 
RGB color difference profiles were created by Microsoft Excel 2010 (Microsoft Corp.).
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Sample size For two blind tests (Fig 6), n=40 laboratory-inoculated samples and n=40 field-collected leaves were used for measurement of VOC emissions 
and PCR analysis. For green house test (Fig 6c), n=3 independent tomato plants were measured. For classification of late blight from other 
infections (Fig 5), n=35 biologically independent leaf samples were tested. For monitoring of VOC emission as a function of infection dates (Fig 
4), n=7 biologically independent leaf samples were tested. For basic characterization of VOC sensor responses, each measurement was 
repeated in 3 independent experiments. Statistics have been derived to calculate error bars and generate box plots. All error bars are defined 
as the standard deviation of replicates.

Data exclusions No data were excluded from the final analyses.

Replication All analyses throughout the entire study were repeated multiple times (from 3 to 15, depending on the particular purpose of each 
experiment) to check consistency of the results. All attempts at replication were highly statistically accurate and reproducible.

Randomization For both the laboratory-inoculated and field measurements, all candidate leaf samples were randomly selected from a group of healthy or 
infected plants.

Blinding We have conducted two blind tests for pathogen detection in both laboratory-inoculated and field-collected leaves. For the double-blinded 
lab test, leaf inoculation and PCR tests were performed independently by some of the authors from the Department of Entomology and Plant 
Pathology of NC State University who were not involved in the development and testing of the sensor device.
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Methods
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ChIP-seq
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MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals The study did not involve laboratory animals.

Wild animals The study did not involve wild animals.

Field-collected samples Field-infected leaves were collected from the Mountain Research Station in Haywood County, NC on Aug 20, 2018. A normal 
condition of housing (greenhouse), temperature (22-30 oC), humidity (~90% relative humidity), and photoperiod (12 h 
illumination/day, from 7 am-7 pm) was provided before and after the infection were reported.

Ethics oversight The Phytotron laboratory from NC State University has approved and provided guidance on the study protocol of the 
greenhouse experiments.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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