

Climate and Potential Yield Losses to Fungal Plant Pathogens

Dan Bebber Associate Professor of Ecology Department of Biosciences University of Exeter

How does potential yield loss to fungal disease vary with weather?

- Potential yield loss = loss in absence of disease control (i.e. fungicides)
- "Pathogen yield gap" or "Disease pressure"
- Affected by varietal resistance, management, weather etc. (disease triangle)
- How will climate change affect potential losses to pathogens?
- Usual approach is to model infection risk by specific plant pathogens
- Another option: measure directly in paired control-fungicide trials, and model influence of weather

Field trials of crop varieties under fungicide-treated and untreated conditions

Trials allow us to investigate climate effects on potential loss

Pathogen Yield Gap = 1 - (Untreated/Treated)

Correlate loss with temperature and humidity through the growing season to build a simple model

Pathogen yield gap ~ Winter Temperature + Summer Humidity

В

А

Relative humidity

Winter wheat

Use current and future climate projections to model yield gap

Relative Humidity change

HadUK-Grid Gridded Climate Observations UKCP18

Historical and projected yield gaps

Spring

Ö

Сгор	2002 - 2020	2021 - 2040	2061 - 2080
Winter Wheat	21.4	22.8	24.3
Spring Wheat	22.0	20.4	17.9
Winter Barley	18.1	18.7	19.3
Spring Barley	10.3	7.5	6.9
Spring Oats	12.0	9.7	10.1

Yield gaps increase for winter crops, decrease for spring crops

Warmer wetter winters increase potential losses

Hotter drier summers decrease potential losses

We can decompose yield gap into different components

Y_{max} = mean of top 5% of treated yields

Y_{gb} = mean difference between treated and untreated

Y_{gg} = mean difference between highest and lowest-yielding varieties within a trial

Y_{gc} = mean difference between best and worst years within a variety within a site

Y_{min} = mean of bottom 5% of untreated yields

 Y_w = modelled mean rainfed yield Y_a = reported mean yield

Yield gaps are poorly explained by monitored diseases

Summary

- 'Disease pressure' is strongly influenced by weather
- Weather influence varies by crop type (Winter vs Spring)
- Paired trials are an underexplored resource for investigating climate change effects on 'disease pressure'

• Dr. Muhammad Mohsin Raza (now at FMC, Philadelphia)

