Assessing the Risk of Cucurbit Downy Mildew Outbreak in the Eastern United States

P.S. Ojiambo Department of Entomology & Plant Pathology North Carolina State University

NC STATE UNIVERSITY

College of Agriculture and Life Sciences

Cucurbit Downy Mildew (Pseudoperonospora cubensis)

Global distribution

- World-wide; where cucurbits are found
- Warm and humid weather
- Status of CDM in the U.S.
 - Mainly in eastern region
 - Resurgence on cucumber since 2004
 - California since 2007
- Control options
 - No resistant cultivars
 - Reliance on fungicides
 - Prediction and forecasting important

Seasonal Spread of Cucurbit Downy Mildew in the Eastern U.S.

- Disease exhibits annual extinction
 and recolonization cycles
- Determine risk of disease outbreak at landscape level:
 - Bayesian modeling of time to disease outbreak

College of Agriculture and Life Sciences

2. Joint modeling of time to disease outbreak and epidemic duration

1. Bayesian Modeling CDM Risk in eastern US

- Hierarchical Bayesian model
 - Combines survival, spatial and Bayesian approaches

Data model: $\rho_{ij}^{\rho-1} \exp(\boldsymbol{\beta}^T \cdot \boldsymbol{X}_{ij} + \boldsymbol{W}_i)$ Process model: $\boldsymbol{W} | \lambda \sim \text{CAR}(\lambda); \ \lambda = 1/\sigma^2$ Parameter model: $\boldsymbol{\beta} \rightarrow \text{flat prior } (0 \text{ to } \infty)$ $\rho, \lambda \rightarrow \text{gamma prior } (1, 10^4)$

Year	Model	DIC	
2008	No frailty	2,537	23
	Unstructured	2,520	7
	Structured	2,513	
2009	No frailty	2,428	18
	Unstructured	2,417	7
	Structured	2,410	

- Models implemented in WinBUGS using MCMC methods
 - Data (time to disease outbreak) from disease monitoring network
 - Standard survival analysis model (no random effects)
 - Frailty model: structured or unstructured random effects
- Best model selection
 - DIC and ΔDIC
 - Frailty model with structured random effects

Risk of Disease Outbreak: Hierarchical Bayesian Frailty Model

- High risk of disease in North Carolina, Virginia
- Cluster of low disease risk around the Great Lakes in 2008 and 2009
- Cluster of low disease risk in southern states; TX, MS, LA, AL
- Disease control: states in the mid-Atlantic region

Ojiambo and Kang (2013). Phytopathology 103:216-227

2. Joint Modeling of Time to Disease Outbreak and Epidemic Duration

- Rationale: Time to disease outbreak is associated with epidemic duration; Goal: understand the nature of association of these two components on disease risk
- Joint Bayesian hierarchical model with spatial random effects
 - Parametric Weibull model for time to disease outbreak: $h(t_{ii}|x_{1ij}) = \rho t_{ii}^{\rho-1} \exp(x'_{1ij}\beta_1 + \phi_{1i})$
 - Zero-truncated Poisson distribution for epidemic duration:

$$p(y_{ij}|\lambda_{ij}) = \begin{cases} 0, \text{ if } y_{ij} = 0\\ \frac{\lambda_{ij}^{y_{ij}} \exp(-\lambda_{ij})}{y_{ij}!(1 - \exp(-\lambda_{ij}))}, \text{ if } y_{ij} = 1, 2, ... \end{cases}$$

- Process model: 4 competing model; Spatial: GMCAR and UniCAR; Non-spatial: IndNormal and MvNorm)
- Parameter model: prior distributions for all parameters specified
- Best model identified using: DIC, LOOIC

Model Performance and Risk Assessment

- Model performance
 - GMCAR had the smallest DIC and LOOIC
 - GMCAR selected as process model
- Risk of CDM (2009)
 - High risk in states along the mid-Atlantic region (NY, PA, NC)
 - High risk along the great lakes region (MI, OH)
 - Low risk in southwest US (TX, MS, LA)
- Implications for monitoring and control
 - Immediate control in high risk states
 - Disease monitoring should concentrate in high risk area
 - Use network analysis to identify high risk locations

ege of Agriculture and Life Sciences

Acknowledgements

- Emily Kang (Univ. of Cincinnati)
- Jieyan Zhang (Graduate student, Univ. of Cincinnati)
- CDM ipmPIPE team
 - Wendy Britton
 - Collaborating institutions
- Funding sources
 - Univ. of Cincinnati Res Council
 - Charles Taft Res Center
 - USDA PIPE Program

