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Overview

● Data
○ Remote Sensing

● Analytics
○ Machine Learning Based Simulations

● Near-Real Time Decisions
○ Edge Computing



Data Preparation
● Remote sensing provides a global coverage.

○ Usually in 1-2 weeks scale.
○ Landsat and Sentinel 2 data is free.

● Remote sensing data is widely used for disease diagnosis.
● Images from different months/seasons can be used to 

compare the infected and healthy plants.
○ For the year that the plant has no infection, we can 

set up a baseline.
○ For those result lower than the baseline, it is a sign 

of a potential infection.
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Remote Sensing Spectral Data
● Spectral reflectance shows how land surface 

reflects radiant energy. 
○ Part of the energy was absorbed, and we 

can compare the observed reflectance 
value and the original value.

● The plots are generated by SeNtinel Applications 
Platform (SNAP)

● Two spectral curves display the spectral 
reflectance of the same area, Transylvania 
County, in different timestamps.
○ Top: the image was taken in early March, 

without cloud covering the area.
○ Bottom: the image was taken in late March, 

with cloud covering the whole area.



Spectral Reflectance
● Image (a) shows the Sentinel-2 RGB 

image taken from Transylvania County.
● A spectral reflectance chart (b) 

displaying the results of Transylvania 
County in different timestamps of 2017.

● B3, B7, and B10 are the wavelength that 
we are focusing on, as 
○ A study has shown that these three 

bands provide significant difference 
between the healthy plant and the 
plant get infected.
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NDVI Profiles
● Normalized Difference 

Vegetation Index (NDVI) value 
can be used to determine the 
greenness of a plant. 

● Chart shows a NDVI plot for 
the Transylvania County in 
2017.
○ One can observe a curve 

that the highest value is 
centered around July 
and August, and the 
value drops as the plant 
get matured.
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Address the limitations of clouds
Previous SOTA Methods

Image size: 573 x 451

Our: GAN + style transfer



Real Time 
Analytics 
for  Digital 
Agriculture

8

T1 T2
⊕ = Match (GMMT1, GMMT2)
Unmatched components represents 
“anomalies” or “changes”

⊕

Unmatched
Component

Challenges: In reality there is no 
ground truth for "anomalous" class

Krishna Karthik Gadiraju, Zexi Chen, Bharathkumar
Ramachandra, Ranga Raju Vatsavai: Real-Time Change 
Detection At the Edge. ICMLA 2022: 776-781



Reinforcement Learning for Decision Making Task
● Q-Learning is a reinforcement learning approach for helping decision 

making tasks under uncertainty.
● The cycle of Q-Learning process 

○ Starts with receiving environmental input as the state
○ Updates its own q value table with the slot of previously selected 

action with current state
○ Chooses the action with the highest q value among all possible 

actions
● The q value is updated by using Bellman’s equation:

● The new q value will be the sum of the current reward under current 
state with a given action and the maximum q value in the current state-
action space multiplied by gamma, the discount factor.
○ Discount factor is the weight of how we evaluate the future state 

compared to immediate reward.

Learning from interaction with 
given environment to achieve 
some long-term goal (reward) 
that is related to the state of the 
environment. 



Q-Learning Performance in Simulation

● Compared to the standard Q-Learning, our improved algorithm receives 
a much higher reward from simulated environment.

● We improved the accuracy of the experimental result by 56%.



Applying Reinforcement Learning on Tomato Disease Management

● Reinforcement learning can be used for fungicide management in tomato field.
● Under different states of tomato, the RL is capable to make the optimal decision 

for minimizing the damage to the tomato.
○ The state is a collection of factors, including:

■ The tomato’s health condition
● Spectral reflectance 

■ Environment
● Soil fertilization
● Precipitation
● Temperature

■ Irrigation method



Disease Spreading
● With the observation of how COVID spreads within human community1, we can 

also develop a simulation of how P. Infection spread through tomato field.
○ In COVID experiment, the spreading coefficient is determined by the 

environment that simulated individual is exposed to, including public 
contact, in-door contact, etc. Corresponding weights are applied to different 
cases.

○ Two contact networks are formed for people carrying the COVID.
■ One is a simulated network between possible places that people will go.
■ The other is a random network that fully discover all the possible places 

that a carrier can go for spreading disease.

Kerr, C. C., Stuart, R. M., Mistry, D., Abeysuriya, R. G., Rosenfeld, K., Hart, G. R., ... & Klein, D. J. (2021). Covasim: an 
agent-based model of COVID-19 dynamics and interventions. PLOS Computational Biology, 17(7), e1009149.



Simulation for Late Blight Spreading

● P. infection, the cause of late blight, can be spread through air, irrigation, and 
soil.
○ A research1 has shown that overhead irrigation can significantly increase 

the chance of a plant get infected by late blight.
● The blight can penetrate the leaf easily, and infected the whole plant within 2 

days.
● Two common approaches to deal with rapid infection

○ Mate with other species to have stronger resistance to late blight.
○ Apply fungicide at the beginning of a season.

● Therefore, real-time on-field remote sensing data is necessary to closely 
monitor the health condition of the crop. 

Becktell, M. C., Daughtrey, M. L., & Fry, W. E. (2005). Epidemiology and management of petunia and tomato late blight in the 
greenhouse. Plant disease, 89(9), 1000-1008.
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